Estimating shear properties of walnut wood: a combined experimental and theoretical approach.

Bachtiar, E. V.; Rüggeberg, M.; Hering, S.; Kaliske, M.; Niemz, Peter (2017). Estimating shear properties of walnut wood: a combined experimental and theoretical approach. Materials and Structures, 50(6), pp. 1-15. Springer 10.1617/s11527-017-1119-2

[img]
Preview
Text
Estimating shear properites of walnut wood.pdf - Published Version
Available under License Publisher holds Copyright (National Licenses).

Download (4MB) | Preview

In this study, several theoretical models to numerically estimate shear properties of orthotropic materials are introduced. These approaches are based on the combination of Hankinson’s empirically derived formula with other empirical and analytical calculations. Next to shear moduli, which are estimated from the elastic moduli and Poisson’s ratios, shear strengths are also estimated from the in-axis strengths. The models are validated by mechanical tests on walnut wood (Juglans regia L.), for which a sufficient data set can be found in literature. The Arcan test is used to estimate the shear moduli, while the shear block test is used to estimate the shear strengths. The results show that the model, which is based on a combined use of Hankinson’s formula and tensor rotation, gives the best estimation of shear moduli as evaluated by the minimum differences to the experimentally obtained results. For the shear strengths, a combination of Hankinson’s formula and Norris’ failure criterion shows the best agreement in comparison to the experimental data. The theoretical calculations may be used for a time efficient estimation of shear modulus and strength in comparison to the very time-consuming experimental estimation.

Item Type:

Journal Article (Original Article)

Division/Institute:

School of Architecture, Wood and Civil Engineering

Name:

Bachtiar, E. V.;
Rüggeberg, M.;
Hering, S.;
Kaliske, M. and
Niemz, Peter

ISSN:

1359-5997

Publisher:

Springer

Language:

English

Submitter:

Service Account

Date Deposited:

12 Dec 2019 14:17

Last Modified:

16 Aug 2023 13:11

Publisher DOI:

10.1617/s11527-017-1119-2

ARBOR DOI:

10.24451/arbor.6031

URI:

https://arbor.bfh.ch/id/eprint/6031

Actions (login required)

View Item View Item
Provide Feedback