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Abstract In this study, several theoretical models to

numerically estimate shear properties of orthotropic

materials are introduced. These approaches are based

on the combination of Hankinson’s empirically

derived formula with other empirical and analytical

calculations. Next to shear moduli, which are esti-

mated from the elastic moduli and Poisson’s ratios,

shear strengths are also estimated from the in-axis

strengths. The models are validated by mechanical

tests on walnut wood (Juglans regia L.), for which a

sufficient data set can be found in literature. The Arcan

test is used to estimate the shear moduli, while the

shear block test is used to estimate the shear strengths.

The results show that the model, which is based on a

combined use of Hankinson’s formula and tensor

rotation, gives the best estimation of shear moduli as

evaluated by the minimum differences to the exper-

imentally obtained results. For the shear strengths, a

combination of Hankinson’s formula and Norris’

failure criterion shows the best agreement in compar-

ison to the experimental data. The theoretical calcu-

lations may be used for a time efficient estimation of

shear modulus and strength in comparison to the very

time-consuming experimental estimation.
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8093 Zurich, Switzerland

M. Kaliske

Institute for Structural Analysis, Technische Universität

Dresden, 01069 Dresden, Germany

P. Niemz

Institute for Material and Wood Technology, Bern

University of Applied Sciences, 6096 Biel, Switzerland

Present Address:

S. Hering

Kernkraftwerk Leibstadt AG, Leibstadt, Switzerland

Materials and Structures (2017) 50:248

https://doi.org/10.1617/s11527-017-1119-2

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
6
0
3
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
6
.
4
.
2
0
2
4

http://orcid.org/0000-0001-5672-7979
https://doi.org/10.1617/s11527-017-1119-2
http://crossmark.crossref.org/dialog/?doi=10.1617/s11527-017-1119-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1617/s11527-017-1119-2&amp;domain=pdf
https://doi.org/10.1617/s11527-017-1119-2


Keywords Approximation methods for orthotropic

shear property � Hankinson’s formula � Shear moduli �
Shear strengths � Walnut wood (Juglans regia L.)

1 Introduction

Shear modulus and strength are important parameters

for characterising the mechanical behaviour of a

material. For isotropic materials, shear modulus

(G) can be analytically derived from the elastic

modulus (E) and the Poisson’s ratio (m) [1]. The shear

strength (su) also can be empirically derived from the

ultimate strength (ru) depending on the chosen failure

criterion [2, 3]. Yet, for orthotropic materials, such as

wood, neither shear modulus nor shear strength can be

derived from the other parameters. Specific experi-

mental tests have been conducted to estimate these

properties. However, it is extremely difficult to

achieve pure shear loading. Shear stress is usually

introduced by a pair of opposing normal loads with an

equal magnitude and a slight offset. The rotation effect

introduced by the offset of the loading is hereby

ignored. Using this basis, the Iosipescu test [4] and the

Arcan test [5, 6] are commonly used to determine the

shear moduli. The shear block test [7] is used to

investigate the shear strength parallel to the fiber.

Unfortunately, due to the high shear resistance across

the fiber, pure shear failure cannot be achieved.

Performing the shear block test across the fiber nearly

always result in compressive failure [8]. Other than

these destructive methods, non-destructive methods,

e.g. ultrasound technique [9], can also be used for

determining the shear moduli, yet not the shear

strengths.

Next to these methodological shortcomings of the

mechanical tests, it requires tedious experimental

work to investigate all six shear planes of an

orthotropic material. In the case of wood with a

natural variability in its properties and with the

additional influence of moisture content on the

mechanical properties, the experimental work is very

time-consuming due to the large amount of samples

that have to be tested and evaluated. The sample

preparation, particularly for the v-notched specimens

used in the Iosipescu and Arcan test, also requires a

high degree of accuracy. The inaccuracies in the

sample preparation combined with the non-axial

clamping can cause bending and twisting within the

sample during the experiment. [10].

Considering these drawbacks, theoretical

approaches were developed to calculate the shear

properties of orthotropic materials. These

approaches adopt the concept of isotropic materials,

for which the shear modulus can be derived from

the in-axis elastic modulus and the Poisson’s ratio

while the shear strength is derived from the in-axis

strength. This kind of relation has been introduced

and presented in Saint-Venant [11] and cited by

Lekhnitskii [12]. Their approaches, however, are

limited to the estimation of shear modulus and the

accuracy of their results has never been investigated

before. In this study, similar estimations for the

shear properties are developed. The new approaches

are based on the combination of both empirical and

analytical in- and off-axis material properties, which

enable them to be used to estimate both shear

modulus and shear strength. The approaches are

implemented for walnut wood (Juglans regia L.),

for which a sufficient data set is available [13, 14].

Furthermore, statistical analyses are performed to

compare and validate the results with the shear

properties that are experimentally obtained using the

above-mentioned Arcan and shear block test setups.

All six shear planes (Fig. 1), i.e., longitudinal radial

(LR), radial longitudinal (RL), longitudinal tangen-

tial (LT), tangential longitudinal (TL) and radial

tangential (RT), tangential radial (TR), of walnut

wood are experimentally investigated at four differ-

ent levels of moisture content.

This study also contributes to the completion of the

orthotropic moisture-dependent data set of walnut

wood. With the addition of the shear properties and in

combination with the data from previous studies

[13, 14], a comprehensive data set of walnut wood in

the elastic and failure range is obtained. Walnut wood

is valued for its wood being used for cabinets and

furniture. Hence, a good part of historical objects is

made of this wood. Therefore, this contribution on its

properties may be valued for conservation purposes.
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2 Materials and methods

2.1 Material

Walnut wood (Juglans regia L.) was taken from trees

grown in the Caucasus region. At 11.8% moisture

content, the average wood density of walnut wood is

671 ± 34 kg/m3. The samples used in this experiment

were clear wood specimens without visible defects.

2.2 Specimen preparation

Blocks of wood with a dimension of at least

150 9 100 9 500 mm3 have been stored in four

different moisture conditions (RH 50, 65, 85, 95%)

at 20 �C for 1 month prior to the specimens prepara-

tion. Two different types of specimen were manufac-

tured. The first type is the v-notched specimen used for

the Arcan test. The specimens were originally cut to a

wooden plate with a length of 130 mm and cross-

section of 50 9 8 mm2. Then, two notches were

milled on the middle part of the specimen, which

reduces the cross-section to 30 9 8 mm2 (Fig. 1a).

The second type is a wooden block with a dimension

of 45 9 45 9 45 mm3. The specimen is introduced in

DIN-52187 [7] for the shear strength test parallel to the

fiber (Fig. 1b). After manufacturing, all specimens

were returned to the climatic chamber for another

month to ensure re-equilibrium of the specimens

(mass variation less than 0.1%/day [15]).

2.3 Density and moisture content measurements

The density of the samples was measured during the

process of sample preparation before the cutting of the

notches. The densities were calculated as raw densities

at specific moisture levels. The moisture content was

determined after the experimental test by measuring at

least fifteen random pieces of the tested specimens for

each moisture condition. The measurement is based on

the oven dry weight according to DIN-52183 [16] with

the oven-dry mass method at 103 �C measured every

6 h until constant mass (change of mass less than

0.1%) achieved (± 24 h drying).

2.4 Shear test

The shear moduli were determined by performing

Arcan tests (Fig. 2a), which uses notched samples.

The test is well-known due to investigations of various

materials under shear loading (e.g., wood [6, 13],

rocks [17], polymers [18] and composites [19, 20]).

The loading schematic of the test is presented in

Fig. 3. The shear strength was determined by the shear

block test (Fig. 2b), which is based on DIN-52187 [7].

The loading schematic of shear block test is presented

in Fig. 4. Both of these experimental tests were carried

all dimensions in mm

(b)

(a)

Fig. 1 Specimens for experimental test: a Arcan test, b shear block test
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out on a Universal Testing Machine (Zwick Roell

Z100, Zwick Roell, Ulm, Germany) equipped with a

100 kN load cell.

The Arcan test was conducted on all six shear

planes of wood (LR, RL, LT, TL, RT and TR)

(Fig. 1a). At least seven successful tests on each plane

were obtained. An initial force of 10 N was set as the

starting point of the measurements. The tests were run

in a displacement-controlled mode with a rate of

1 mm/min until failure. For the strain measurement,

digital image correlation (DIC) was used. A high

contrast speckle pattern was applied to the middle area

on both sides of the specimens (Fig. 1a) with an

airbrush gun in combination with a nozzle cup with a

diameter of 0.8 mm and an airbrush needle with a

diameter of 0.4 mm. During the measurement, pic-

tures with a frequency of 1 Hz were taken using two

cameras. Each camera was aiming straight on each

side of the specimens taking images of the speckled

regions. Based on these sets of images, the surface

strains were calculated with a commercial two-

dimensional digital image correlation software (VIC

2D, Correlated Solution). This technique has been

successfully used in previous studies [13, 21, 22]. The

shear moduli (G) were calculated by a linear relation

between shear stress and shear strain between 20 and

40% of the maximum shear stress.

The shear block test was also performed on all six

shear planes of wood (Fig. 1b) on the same testing

machine and load cell. Ten successful tests on each

plane were obtained. An initial force of 500 N was set

as the starting point continued by a displacement

controlled mode with a rate of 4 mm/min until failure.

In this measurement, the focus was set on measuring

the shear strength. Therefore, the strain was just

calculated from the displacement of the machine lever.

The shear strength (su) was determined as the ultimate

stress followed by failure.

Fig. 2 Experimental test

set-up: a Arcan test, b shear

block test

Fig. 3 Loading schematic for Arcan test. In the center of the

specimen, which is the area of interest, stresses from tension (r)

and moment (M) loadings are cancelled out and only the shear

stresses (s) are remaining
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2.5 Indexing of the shear properties

The assigning of the six shear planes with the indices

L,R, T is defined in several different ways in literature,

which can lead to confusion regarding the shear

moduli (G) and shear strength (su) of the different

planes. In this study, the following assignment is

consistently applied to all shear properties: Each shear

plane is assigned with two indices. The first index

refers to the direction normal to the shear plane, while

the second index refers to the loading direction. As an

example, GRL and suRL are properties acting on the

surface normal to the radial (R) direction while being

loaded in longitudinal (L) direction. This indexing is

consistent with the shear stresses (s in Fig. 5). The

specimens as presented in Fig. 1 have also been named

regarding these notations.

2.6 Numerical approaches

The numerical approaches introduced in this study can

be used to estimate both shear modulus and shear

strength. All methods to estimate the shear moduli

(G) require the elastic moduli (EL, ER, ET) and the

Poisson’s ratios (mLR, mRL, mLT, mTL, mRT, mTR) as the

input parameter. On the other hand, the input param-

eter to estimate the shear strengths (su) are the in-axis

strengths (ruL, ruR, ruT). All input parameters for

walnut wood (Juglans regia L.) based on [13, 14] are

presented in Table S1.

The numerical approaches are adopting the advan-

tage of Hankinson’s empirical formula [23], which is

able to estimate the off-axis parameter with only the

knowledge of the in-axis properties without the shear

properties. Although this equation was initially devel-

oped to predict the off-axis strength of a material

[8, 23], the formula has also been used to estimate the

off-axis elastic moduli with sufficient accuracy

[24, 25]. Hankinson’s formulas in three-dimensional

form, which differentiate between the relation within

the perpendicular planes (LR-, LT-plane) (Eq. (1))

and the parallel plane (RT-plane) (Eq. (2)), are used in

this study.

Fig. 4 Shear distribution in loaded shear block specimens: a off-axis stresses due to eccentricity (de) [36], b orthogonal stress

components

Fig. 5 Stress block and spherical coordinate system
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Nð/Þ ¼
NR � NT

p=2
/þ NT � 1

2
KðNR þ NTÞ sinð2/Þ

ð1Þ

Nðh;/Þ ¼
NL Nð/Þ

NL sin2 hþ Nð/Þ cos2 h
ð2Þ

with N(/) being the empirical value of the off-axis

parameter (N stands for either elastic moduli, Pois-

son’s ratio, or strength) in the perpendicular plane with

an angle /, which defines the offset in the RT-plane

(/ = 0 is the tangential direction T, / = p/2 is the

radial direction R).N(h,/) is the off-axis parameter with

the angle h in respect to fiber direction (h = 0 is in

fiber direction (L), h = p/2 is perpendicular to fiber

direction). Both h and / are angles for a spherical

coordinate system as presented in Fig. 5. K is an

empirically determined constant to adjust the ampli-

tude of the sinusoidal function for RT-plane (K = 0.2

for hardwood, K = 0.4 for softwood [8]).

2.6.1 Empirical and analytical approaches

for estimating shear moduli

Approach M1 (Modulus 1)

Approach M1 is based on the combination of Hank-

inson’s formula, which estimates the off-axis param-

eter for elastic modulus, and Eq. (3), which relates the

off-axis elastic moduli (Ehij) to the shear modulus

(G) by tensor rotation [26, 27]. The results of

substituting both equations together are the definition

of the shear modulus (G) as presented in Eqs. (4) and

(5)

Ehij ¼
cos4 h
Ei

þ sin4 h
Ej

þ 1

Gij

� vji

Ei

� vij

Ej

� �
cos2 h sin2 h

� ��1

;

where; i; j 2 L; R; T and i 6¼ j;

ð3Þ

Gij ¼
vji þ 1

Ei

þ vij þ 1

Ej

� ��1

;

where; i; j ¼ L; R; or L; T;

ð4Þ

Gij ¼
vji � 1

Ei

þ vij � 1

Ej

þ 8

ð1 � KÞðEi þ EjÞ

� ��1

;

where; i; j ¼ R; T;

ð5Þ

with Gij being the shear modulus in ij-plane. Ei and Ej

are the elastic moduli along i- and j-axis, respectively.

mij is the Poisson’s ratio that corresponds to a passive

contraction in direction i when an extension is applied

in direction j and vice versa for mji.

Approach M2 (Modulus 2)

The shear modulus is estimated using the same

equation as for the isotropic material but with the

elastic modulus and Poisson’s ratio of the 45� off-axis

angle (Eq. (6))

Gij ¼
E45ij

2ð1 þ m45ijÞ
; where; i; j 2 L; R; T

and i 6¼ j:

ð6Þ

This relation was initially introduced in Kon [28]

and cited in Yoshihara [24]. It can also be obtained by

solving the combination of Hankinson’s formula

(Eqs. (1) and (2)), the off-axis tensor rotation of

elastic modulus (Eq. (3)) and the Poisson’s ratio [27]

for h = 45�. In this study, both 45� off-axis elastic

modulus (E45ij) and Poisson’s ratio (m45ij) are esti-

mated based on Hankinson’s formula. Therefore, it

leads to Eqs. (7) and (8)

Gij ¼ 1 þ 2
1
mij
þ 1

mji

 !
1

Ei

þ 1

Ej

� �" #�1

;

where; i; j ¼ L; R; or L; T;

ð7Þ

Gij ¼
K � 1ð Þ Ei þ Ej

� �
2 K � 1ð Þ mij þ mji

� �
� 4

; where; i; j ¼ R; T:

ð8Þ

Hankinson’s formula has never been used to estimate

the off-axis Poisson’s ratio. However, since it is

known that the difference between approach M1 and

M2 is only on their way to assume the Poisson’s ratio,

the difference in their resulted shear modulus will

directly describe the agreement between their

assumptions.

Two other approaches (Eqs. (9) and (10)) for esti-

mating the shear moduli in all six shear planes have

been introduced in Saint-Venant [11] and cited in

Lekhnitskii [12].
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Approach M3 (Modulus 3)

Gij ¼
vji þ 1

Ei

þ vij þ 1

Ej

� ��1

; where; i; j 2 L; R; T

and i 6¼ j:

ð9Þ

Approach M4 (Modulus 4)

Gij ¼
vji

Ei

þ vij

Ej

þ 2ffiffiffiffiffiffiffiffiffi
EiEj

p
" #�1

;

where; i; j 2 L; R; T and i 6¼ j:

ð10Þ

It is noticed that the first approach introduced by

Saint-Venant [11] (M3) (Eq. (9)) is identical to the M1

approach, based on Hankinson’s formula for LR- and

LT-plane (Eq. (4)). The M3 approach, therefore, can

be seen as a simplification method of the M1, since it

can be regarded as a combination of two-dimensional

Hankinson’s formula in the 2D version and the tensor

rotation. Therefore, unlike M1, which requires two

different equations (Eqs. (4) and (5)), the M3 approach

only requires one equation for all the three shear planes

(Eq. (9)). However, this similarity seems only a

coincidence when it is tracked back to the beginning

when both Hankinson’s and M3 approach were

introduced. St. Venant initially proposed M3 relation

for shear modulus in 1863, while Hankinson’s for-

mula, which was developed later in 1921, is initially

aiming for the material strength. Only later in [24, 25],

Hankinson’s formulas were used to estimate the off-

axis elastic moduli. In this study, both approaches are

used for estimating the shear modulus. The formulas

are identical for the LT- and LR-plane, yet differ for

the RT-plane (Eqs. (5) and (9)).

2.7 Estimation of shear strength

To estimate shear strength, alternative approaches to

calculate the off-axis strength properties are combined

with Hankinson’s formula. However, unlike the shear

moduli, which can be analytically derived with tensor

rotation as in M1 (Eq. (3)), the approaches for the

shear strength are derived from failure criteria taken

from literature.

Approach S1 (Strength 1)

Here, the off-axis strength is estimated based on the

ellipsoidal failure criterion [29]

r2
uhij ¼

cos4 h
r2
ui

þ sin4 h
r2
uj

þ 1

suij

� �
cos2 h sin2 h

" #�1

;

where; i; j 2 L; R; T and i 6¼ j;

ð11Þ

with suij being the shear strength in ij-plane. ruhij are

the off-axis strength properties at angle h. rui and ruj
are the strength properties in i and j axis, respectively.

The shear strengths (Eqs. (12) and (13)) can be

obtained by substituting the off-axis strength proper-

ties of Hankinson’s formula (Eqs. (1) and (2)) to

Eq. (11)

suij ¼
1

2
2ruiruj
	 
0:5

; where; i; j ¼ L; R; or L; T;

ð12Þ

suij ¼
16

ðK � 1Þ2 rui þ ruj
� �2

� 1

r2
ui

� 1

r2
uj

" #�0:5

;

where; i; j ¼ R;T:

ð13Þ

Approach S2 (Strength 2)

This approach takes the off-axis strength form the

failure criterion introduced by Norris [30]

r2
uhij ¼

cos4 h
r2
ui

þ sin4 h
r2
uj

þ 1

s2
ij

� 1

ruiruj

 !
cos2 h sin2 h

" #�1

;

where; i; j 2 L; R; T and i 6¼ j:

ð14Þ

The shear strengths are obtained by substituting off-

axis strength properties obtained with Hankinson’s

formula (Eqs. (1) and (2)) to Eq. (14). The results are

presented in Eqs. (15) and (16)

suij ¼
1

3
3ruiruj
	 
0:5

; where; i; j ¼ L;R; or L;T ;

ð15Þ

suij ¼
16

ðK� 1Þ2 rui þruj
� �2

þ 1

ruiruj
� 1

r2
ui

� 1

r2
uj

" #�0:5

;

where; i; j¼ R; T:

ð16Þ

Approach S3 (Strength 3)

The off-axis strength is estimated based on a failure

criterion introduced by [31]

Materials and Structures (2017) 50:248 Page 7 of 15 248



r2
uhij ¼

cos4 h
r2
ui

þ sin4 h
r2
uj

þ 1

s2
ij

� 1

r2
ui

� 1

r2
uj

þ 1

r2
uk

 !
cos2 h sin2 h

" #�1

;

where; i; j; k 2 L; R; T and i 6¼ j 6¼ k:

ð17Þ

In Tsai, Wu [32], the Hill failure criterion was

simplified with an assumption that the strengths in the

perpendicular directions are equal (ruR = ruT) while

the parallel plane is observed (LR- and LT-planes).

This is known as the Tsai-Hill failure criterion. By

adopting this assumption and substituting Hankin-

son’s formula to Eq. (17), the shear strength can be

estimated as in Eqs. (18) and (19). The assumption

also ensures that the square root result of Eq. (18)

never leads to an imaginary number

suij ¼
1

rui
þ 1

ruj

� �2

� 1

r2
uk

" #�0:5

;

where; i; j; k ¼ L; R; R or L; T; T;

ð18Þ

suij ¼
16

ðK � 1Þ2 rui þ ruj
� �2

� 1

r2
uk

" #�0:5

;

where; i; j; k ¼ R; T; L:

ð19Þ

2.8 Statistical analysis

The material properties in main orthogonal directions

from the literature [13] were determined by experi-

mental tests. Each property was the averaged value

from several tested specimens. Therefore, it contains a

certain amount of deviation. Since the shear moduli

and shear strengths are estimated from these data, their

variation is taken into account by the bootstrapping

technique with one random sample for each parameter

and repetition of 20,000 times. As an additional check,

the results have been compared and show agreement

with the error propagation calculation based on the

combined standard deviation for each formula [33].

To compare the calculated shear data and the

experimentally determined data, a statistical analysis

was performed via T test (significance level 0.05). The

statistical analysis provides a reliable comparison

regarding the differences between these data. The

results of the statistical comparison between the

calculated shear data and the experimental data are

either no significant difference (data come from the

same population) or significant difference (data come

from the different population). The error propagation

was also considered in the analysis. The above-

mentioned error propagation methods testify the

variation of data in the form of standard deviation

for each material property calculated with the theo-

retical approaches. Based on this standard deviation, a

set of normally distributed random numbers is gener-

ated for the calculated shear data with an equal

quantity to the experimentally tested specimens. The

comparison method is repeated 1000 times and the

results are taken based on the averaged probability

value. Prior to this T test analysis, tests are conducted

Fig. 6 Shear moduli of walnut wood (Juglans regia L.)

determined by various methods: Reference data (R) (mechanical

Arcan test), Ultrasound data (U) [13], and the different

theoretical approaches (M1–M4), which are described in the

text. The closed or opened symbols indicate statistically

significant and no significant difference to the reference data,

respectively. The dashed line separates the data of the

different moisture levels; the x-axis is not scaled
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on the normal distribution of the data via Kol-

mogorov–Smirnov’s test [34] and on the variance

equality of each data pair via Bartlett’s test [35].

3 Results and discussion

3.1 Experimentally determined shear moduli

The experimentally determined shear moduli (G) of

walnut wood are presented in Fig. 6 and in Table S2

and S3 (supplementary online information) together

with the different theoretically calculated values. At

11.8% moisture content, the shear moduli of walnut

wood are 1115(± 15%), 849(± 12%) and 270(± 9%)

MPa in LR-, LT- and RT-planes, respectively. Two

previous studies report shear moduli of walnut wood

[13, 26], which are lower by 2–28% than those of the

present study. Even within the same wood species, the

natural inhomogeneity, different sources, different

density and different tested moisture content of wood

may lead to the variation of wood properties [8, 36].

The difference in the properties of the wood is even

higher when comparing different wood species due to

differences in tissue and cell wall structure [8]. The

shear moduli of maritime pine (Pinus pinaster Ait.)

and common ash (Fraxinus excelsior L.), which are

tested in Xavier et al. [6] and Clauss et al. [21],

respectively, are up to 28 and 45% higher in compar-

ison to our results.

An alternative method to experimentally estimate

the shear moduli is the ultrasound test. This technique

and its theoretical basis have been very well estab-

lished [37]. For walnut wood, Bachtiar et al. [13] have

used the ultrasound technique to estimate its moisture

dependent shear properties. The results, which are

presented in Fig. 6 and also in Table S3, are statisti-

cally compared with the data obtained by the Arcan

test. It is shown that the results of the ultrasound tests

are in reasonable agreement with those of the Arcan

tests. For the LR-and LT-plane, the results of three out

of four tested moisture levels show no significant

difference compared to those of the Arcan tests, while

in RT-plane, two out of four show no significant

difference. The slight differences are suspected to be

due to the natural variability of wood properties, as

different specimens have been tested for the two

studies.

3.2 Experimentally determined shear strength

The shear strengths (su) of walnut wood were inves-

tigated with the shear block test. The results are

presented in Fig. 7 and in Table S4 and S5 (supple-

mentary online information). When loading parallel to

fiber direction (RL- and TL-planes), the shear block

test is recognized as a standard norm to investigate the

shear strengths [7]. By inducing loading in the shear

plane across the fiber (LR and LT in Fig. 8), mainly

compression failure will occur. Since wood is

Fig. 7 Shear strength (su) of walnut wood (Juglans regia L.)

determined by various methods: Reference data (R) (mechanical

shear block test) and the different theoretical approaches (S1–

S3) (see text for details and equations). The closed or opened

symbols indicate statistically significant and no significant

difference to the reference data, respectively. The dashed line

separates the data of the different moisture levels; the x axis is

not scaled
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modelled as an orthotropic material, which assumes a

symmetry of its properties, the resulting shear

strengths in RL- and TL-planes are also regarded to

represent the shear strengths LR- and LT-planes

(suLR = suRL and suLT = suTL).

Determination of shear strength in the RT-plane has

never been defined in the standard norm, which may

be due to the problem of failing not purely in shear,

and the norms being more focussed on application

aspects. However, from a scientific point of view, the

shear strength in RT-plane is required for a full three-

dimensional material model. Therefore, in this study,

the shear strength in RT-plane is also estimated with

the shear block test. The specimens were tested in both

RT- and TR-planes and the results were averaged. The

oblique crack pattern (TR and RT) indeed indicates a

non-pure shear failure. However, the results are still

regarded as the optimum for representing shear

strength [38].

At 11.8% moisture content, the shear strengths of

walnut wood obtained in this study are 15.5(± 5%)

MPa, 13.3(± 9%) MPa and 6.2(± 7%) MPa in LR-,

LT- and RT-planes, respectively. The shear strengths

of walnut wood as reported in literature [39] are lower

by almost a factor of two compared to the now

obtained results. The literature data in LR- and LT-

plane are compiled from walnut (Juglans regia L.) and

black walnut (Juglans nigra L.) wood, while in RT-

plane, the data was estimated from oak wood (Quercus

robur L.) and beech wood (Fagus sylvatica L.). These

two aspects make a direct comparison to our results

rather difficult.

On the other hand, the comparison of the presently

obtained data with that of other wood species show

similar shear strengths in the LR- and LT-planes. Two

hardwood species, oak (Quercus robur L.) and

Sycamore maple (Acer pseudoplatanus L.) wood were

tested using the shear block test and presented in

Fig. 8 Shear failure pattern of walnut wood (Juglans regia L.):

a shear block test. b Cellular level (assumed failure pattern

based on the pattern of the shear block test). Arrows indicate the

applied shear loading while dashed lines indicate the eventually

appearing cracks during failure
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Ozyhar et al. [40] and Sonderegger et al. [41],

respectively. The values are higher by 3–15% com-

pared to the ones of the current study, which is well

within the range of natural variability of properties,

especially considering different wood species. More-

over, the shear strength in RT-plane of maritime pine

wood (Pinus pinaster Ait.) [6], as determined by the

Arcan and the Iosipescu test was 25–29% lower than

the presently obtained one of walnut wood. This is in

line with the general observation that most softwood

species possess a lower shear strength than hardwood

species [8, 39].

3.3 Influence of fiber direction on shear modulus

and strength

As shown in Figs. 6 and 7 and discussed in the

previous sections, shear modulus and strength of wood

are highest in RL = LR-plane, followed by TL = LT-

plane, whereas the RT = TR-plane represents the

weakest one. This order of stiffness and strength is

related to the in-axis material properties of wood

(L[R[T). The reason for this specific order lies in

the orthotropic cellular structure of the wood as

presented in Fig. 8b.

Both, shear modulus and shear strength in TL-plane

are always lower than those in RL-plane. This may be

explained by the fact that the TL-shear plane is

associated with the deformation in L-direction, which

is in plane with the wood rays. In this shear plane, the

middle lamellas are also aligned continuously, which

may lead to a smooth plane of intra-wall deformations

and failures between adjacent fibers or between fibers

and rays [42]. This type of failure requires less energy

in comparison to that associated with the RL-plane,

where primarily trans-wall deformations or failure

(exposing the cell lumens) occur. On the other hand,

RT- and TR- shear plane always possess the lowest

resistance against shear. Loading in these shear planes

leads to deformation in plane with the wood fibers.

Based on the theoretical assumption of the

orthotropic material, the shear moduli and strengths

show symmetric behaviour: GLT = GTL, GLR = GRL,

GRT = GTR, suLT = suTL, suLR = suRL and suRT = -

suTR [8]. While this assumption is understandable for

the shear moduli, its interpretation for the shear

strength is rather difficult. The RL and LR shear

strengths (suRL and suLR) are assumed to be equal, as

well as the TL and LT shear strength (suTL and suLT)

are. Yet, the specific failure patterns of the respective

planes are completely different. Shear loading parallel

to fiber direction (suRL and suTL) induces both trans-

and intra-wall failure. On the other hand, shear loading

perpendicular to fiber direction (suLR and suLT) always

leads to kinking of the wood fibers. The high resistance

of wood fibers against kinking leads to compressive

failure instead.

3.4 Influence of moisture content on shear

modulus and strength

The shear moduli and shear strengths decrease for

increasing moisture content. The shear moduli in LR-

plane (GLR) decrease from 1315(± 4%) MPa to

972(± 4%) MPa as the moisture content increases

from 7.2 to 14.7%. This behaviour is well-known from

previous studies (e.g. Bachtiar et al. [13]). In general,

wood mechanical properties including the shear

moduli and strengths decrease as the moisture content

increases [36, 43]. This is due to the reduction of the

number of hydrogen bonds crosslinking the cellulose

and other constituents in the non-crystalline regions of

the cell walls as moisture content increases [44, 45].

Part of this effect is also due to the increase of the

cross-sectional area due to swelling without adding

material other than water [36] which leads to a lower

calculated material properties.

3.5 Theoretical approaches for estimating

the shear modulus

The numerically derived values for shear moduli

obtained from the different theoretical approaches and

their significance level in comparison to the mechan-

ically estimated data are presented in Fig. 6 and in

Table S3. The best estimations are given by the M1

approach with average deviations of - 19, 0 and

- 3% in comparison to the Arcan data for GLR, GLT

and GRT, respectively.

In both LR- and LT-planes, the M1 approach uses

the same equation to estimate the shear moduli

(Eq. (4)). Interestingly, the comparison between the

shear moduli calculated with this approach and those

obtained by the Arcan tests shows an underestimation

of the shear moduli in LR-plane (GLR) by around 19%.

In LT-plane, however, the differences are below the

level of significance at all moisture levels. Since the

M1 approach is based on the combination of
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Hankinson’s empirical formula and the analytically

derived tensor rotation, one may conclude that the

inaccuracy in the LR-plane originates from Hankin-

son’s formula, which might fail to correctly estimate

the off-axis material parameters in this plane. How-

ever, Yoshihara [24] has investigated the off-axis

parameter of two wood species, agathis (Agathis sp.)

and katsura (Cercidiphyllum japonicum Sieb. et Zucc.)

wood in LR-plane. The results show a good agreement

between the experimental data, the Hankinson data

and the tensor rotation data for both wood species. The

inaccuracy visible for the LR-plane in this study is

likely due to the variability of the wood. Different sets

of wood specimens were taken for the Arcan test and

the in-axis test [13]. Therefore, a variation of density

or other parameters cannot be avoided.

The above explanations regarding M1 results in

LR- and LT-planes are also valid for M3 since both

approaches are identical and produce same results in

these planes (Eq. (4) = Eq. (9)). The difference

between M1 and M3 lies only in the RT-plane. M3

assumes that the off-axis mechanical properties are

distributed in the same way for all planes. Therefore, it

also uses Eq. (9) for the RT-plane as it is for LR- and

LT-planes.

On the other hand, M1 uses an additional equation

(Eq. (5)), which represents a different relation in the

off-axis mechanical parameters for the RT-plane

(Eq. (1)) in comparison to LR- and LT-planes

(Eq. (2)) based on three-dimensional Hankinson’s

formula in its three-dimensional form. The model

for the off-axis mechanical parameters in the RT-plane

is described by a sinusoidal function of the angle /
(Eq. (1) and Fig. 5) [8, 46]. The off-axis parameters in

RT-plane are in fact lowest at/ = 20�–30� and not for

T direction (/ = 0�). This distribution is different

compared to the one in LR- and LT- planes, where the

lowest parameters are for R or T direction, respec-

tively. Clauss et al. [21], who tested wood in-axis and

off-axis, has observed this behaviour for the elastic

moduli of common ash (Fraxinus excelsior L.) wood.

With the adoption of this model in RT-plane, M1

approach accurately estimates the shear moduli for

two out of four moisture levels. On the other hand, M3

overestimates the shear moduli for all moisture levels

by an average of 30%. The more accurate estimation

of the shear moduli by the M1 approach in comparison

to M3 might be an indication that the properties of

walnut wood RT-plane vary in a similar way as the

sinusoidal function of the angle, and comparable with

ash wood.

Moreover, the M2 approach (Eqs. (7) and (8)),

although different on its assumption for the Poisson’s

ratios, nearly always provide similar results to the M1

data. This is an indication that Hankinson’s formula is

also able to estimate the off-axis Poisson’s ratio with a

reasonable accuracy. On the other hand, the M4

approach (Eq. (10)) shows the highest differences in

values compared to the experimental data. In all shear

planes and at all moisture content levels, it overesti-

mates the shear moduli by at least 19% in comparison

to the reference data. This may be mainly due to the

adopted assumption about the relation of the elastic

moduli, which is Ei ¼ Ej ¼
ffiffiffiffiffiffiffiffiffi
EiEj

p
. This assumption

is invalid for almost all shear planes. In fact, it is only

valid for the RT-plane since the ER & ET [47], which

coincides with having obtained the lowest errors for

the RT-plane. Although varying for different wood

species, the elastic moduli in longitudinal direction is

around ten times greater than the one in perpendicular

direction. For walnut wood the ratio of elastic moduli

of the in-axis directions are EL:ER:ET = 8–12:1–1.1:1

[13], making the above-mentioned assumption not

suitable for estimating shear moduli in LR- and LT-

plane.

While the discrepancies between experimentally

obtained and theoretically calculated values can be

partly explained by the intrinsic assumptions of the

models, inaccuracies may have also been introduced

by the experimental techniques (e.g. from specimens

size and the presence of notches in the Arcan setup).

Values for the shear moduli as obtained from the

Arcan tests might deviate from the true shear moduli.

3.6 Theoretical approaches for estimating

the shear strength

The shear strengths (su) obtained from the theoretical

approaches and from the mechanical tests are pre-

sented in Fig. 7 and in Table S5. The S2 (Strength 2)

approach, which is based on combination of Hankin-

son’s formula and the Norris failure criterion, gives the

best estimation of shear strengths with average

deviations of - 7, - 1 and - 30% in regard to the

values obtained from the shear block tests for LR, LT

and RT-plane, respectively. In fact, for the LR and the

LT plane, all experimentally derived values are
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correctly estimated by the theoretical approaches as

the differences are below the level of significance.

Significant errors arise for the RT-plane, which are

discussed below. The other approaches, S1 and S3,

estimate the shear strengths in LR- and LT-plane with

less accuracy giving overestimations of up to 31%

from the shear block data.

The differences in the accuracy of estimating shear

strengths between the different approaches mainly

originate from their assumption of the failure criteria.

The S2 approach incorporates an additional relation

between the two perpendicular in-axis strengths,

which is not the case for the S1 approach. In the

ellipsoidal failure criteria adopted by the S1 approach,

the strengths are taken as independent from each other

(Eq. (11)). The S3 approach, on the other hand, does

not only assume a certain relationship between the two

perpendicular axes but also to the third axis (Eq. (17)).

Part of the error obtained for the S3 approach is, thus,

also related to the inconsistency of the assumptions

made in the Tsai-Hill failure criterion. When LR- and

LT- planes are observed, the strength in the perpen-

dicular plane has to be assumed equal (ruR = ruT).

Otherwise, Eq. (18) may give an imaginary result due

to the square root of a negative value. This assumption,

on the other hand, is not true since the strength in R

direction is often higher than in T direction [8]. In fact,

for walnut wood ruR are in average 20% higher than

ruT [14].

In RT-plane, all three theoretical approaches,

including S2, underestimate the shear strengths by

19–40% in comparison to the values obtained by the

shear block tests. This inaccuracy may also be caused

by the invalidity of the shear block test to estimate

shear strength in RT-plane as briefly discussed in the

previous section. The eccentric loading of the shear

block test leads to off-axis stresses (Fig. 4a) in the

shear block specimens, which can be represented by

in-axis stresses in an orthogonal direction (Fig. 4b).

The orthogonal loading consists of a combination of

compression stress parallel to the loading, tension

stress perpendicular to the loading and shear stress in

the tested plane. When the specimen failed, the

strength is results of this complex combination of

stresses. Due to the structure of wood with its fiber

alignment in L-direction, the compressive, tensile and

shear loading may equally contribute to the overall

loading of the sample for the RT shear plane. To

understand the behaviour of wood subjected to a

combined stresses, one should consider quadratic

wood failure criteria [48]. If the in-axis strength for

both R and T are assumed equal (Tsai-Hill approach in

Tsai, Wu [32]) and the shear strength is smaller than

these in-axis strengths [8, 38], the calculated results

from the theoretical approaches may indeed represent

the actual shear strengths.

Overall, the current results show that Norris failure

criteria via the S2 approach give the best estimation

for shear strength in all planes LR, LT and RT. This

finding further confirms the results of Cabrero,

Gebremedhin [48], where Norris failure criteria have

been proven accurate for wood.

4 Conclusion

The moisture dependent shear moduli and shear

strengths data of walnut wood (Juglans regia L.) are

experimentally obtained in this study using an Arcan

test and the shear block test setup. These data

combined with the in-axis elastic moduli, Poisson’s

ratio and strengths data taken from Bachtiar et al. [14]

and Bachtiar et al. [13] do now represent the full three-

dimensional and moisture dependent (at four different

moisture levels) data set of walnut wood. Since a good

part of historical objects found in the museums is made

of walnut wood, its complete data set may contribute

to any conservation purposes. The data can serve as

input parameters for advance computational mod-

elling of cultural heritage objects by means of finite

element methods [49, 50].

Several theoretical approaches for estimating shear

moduli and strengths from the in-axis properties are

introduced in this study. The shear moduli (G) are

estimated from the in-axis elastic moduli (E) and

Poisson’s ratios (m) while the shear strengths (su) are

estimated from the in-axis strength (ru). While the

efficiency of the theoretical approaches to estimate the

shear moduli and strengths is undeniable, their results

are not always sufficiently accurate. The approaches,

which are based on the combination of Hankinson’s

empirically derived formulas and the tensor rotation

give the best results to estimate shear moduli. The

shear strengths, on the other hand, are best estimated

with the approach based on the combination of

Hankinson’s formula and Norris’ failure criterion. In

any cases, when shear properties of an orthotropic

material are required, these approaches can be used as
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alternative solutions to the tedious experimental

investigations. Besides the experimental test for

estimating the shear properties is time-consuming, it

may also contain flaws especially for the determina-

tion of the shear strength in the perpendicular plane as

has been discussed before. The accuracy of these

methods has been studied for estimating the shear

orthotropic properties of walnut wood. However,

further studies are required to proof their accuracy

for other wood species and other orthotropic materials.

In almost all cases, the calculated shear moduli and

shear strengths obtained from various theoretical

approaches are either in agreement (below level of

significance) or lower in comparison to the experi-

mentally derived values. From the application point of

view, this underestimation of the material properties

leads to the less efficient use of the material. On the

other hand, this makes the use of the theoretically

calculated values acceptable since it will increase the

safety factor of the structures against shear failure.
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gen, Math-phys Klasse 1(1):582–592
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14. Bachtiar EV, Rüggeberg M, Niemz P (2017) Mechanical

behavior of walnut (Juglans regia L.) and cherry (Prunus

avium L.) wood in tension and compression in all anatom-

ical directions. Revisiting the tensile/compressive stiffness

ratios of wood. In print Holzforschung 2017
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38. Wagenführ A, Scholz F (2012) Taschenbuch der

Holztechnik. Carl Hanser Verlag GmbH & Co. KG,

München

39. Reichel S (2015) Modellierung und Simulation hygro-

mechanisch beanspruchter Strukturen aus Holz im Kurz-

und Langzeitbereich. Technische Universität Dresden,

Dresden

40. Ozyhar T, Mohl L, Hering S, Hass P, Zeindler L, Acker-

mann R, Niemz P (2016) Orthotropic hygric and mechanical

material properties of oak wood. Wood Mater Sci Eng

11(1):36–45. https://doi.org/10.1080/17480272.2014.

941930

41. Sonderegger W, Martienssen A, Nitsche C, Ozyhar T,

Kaliske M, Niemz P (2013) Investigations on the physical

and mechanical behaviour of sycamore maple (Acer pseu-

doplatanus L.). Eur J Wood Wood Prod 71(1):91–99.

https://doi.org/10.1007/s00107-012-0641-8

42. Donaldson L (2011) Delamination of wood at the micro-

scopic scale: current knowledge and methods. In: Bucur V

(ed) Delamination in wood, wood products and wood-based

composites. Springer, Dordrecht, pp 123–144

43. Gerhards C (1982) Effect of moisture content and temper-

ature on the mechanical properties of wood: an analysis of

immediate effects. Wood Fiber Sci 14(1):4–36

44. Skaar C (1988) Wood-water relations. Springer, New York

45. Winandy JE, Rowell RM (1984) The chemistry of wood

strength. ACS Publications, Washington

46. Goodman JR, Bodig J (1971) Orthotropic strength of wood

in compression. J Wood Sci 4(2):83–94

47. Ross RJ (2010) Wood handbook: wood as an engineering

material. U.S. Dep. Agric, Madison

48. Cabrero JM, Gebremedhin KG (2010) Evaluation of failure

criteria in wood members. In: WCTE 2010: World Con-

ference on Timber Engineering, Riva Del Garda, Trento,

Italy

49. Zı́tek P, Vyhlı́dal T (2009) Model-based moisture sorption

stabilization in historical buildings. Build Environ

44(6):1181–1187

50. Konopka D, Gebhardt C, Kaliske M (2016) Numerical

modelling of wooden structures. J Cult Herit 24:S93–S103

Materials and Structures (2017) 50:248 Page 15 of 15 248

https://doi.org/10.1080/01621459.1974.10480196
https://doi.org/10.1080/17480272.2014.941930
https://doi.org/10.1080/17480272.2014.941930
https://doi.org/10.1007/s00107-012-0641-8

