Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina

PONCET, BÉNÉDICTE N.; Herrmann, Doris; GUGERLI, FELIX; TABERLET, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; RIOUX, DELPHINE; THUILLER, WILFRIED; AUBERT, SERGE; MANEL, STÉPHANIE (2010). Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina Molecular Ecology, 19(14), pp. 2896-2907. Wiley-Blackwell 10.1111/j.1365-294X.2010.04696.x

[img] Text
Poncet_MolEcol_2010.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (421kB) | Request a copy

Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.

Item Type:

Journal Article (Original Article)

Division/Institute:

School of Agricultural, Forest and Food Sciences HAFL

Name:

PONCET, BÉNÉDICTE N.;
Herrmann, Doris0000-0002-1776-9479;
GUGERLI, FELIX;
TABERLET, PIERRE;
HOLDEREGGER, ROLF;
GIELLY, LUDOVIC;
RIOUX, DELPHINE;
THUILLER, WILFRIED;
AUBERT, SERGE and
MANEL, STÉPHANIE

Subjects:

Q Science > QK Botany

ISSN:

1365294X

Publisher:

Wiley-Blackwell

Language:

English

Submitter:

Doris Herrmann

Date Deposited:

04 Aug 2021 08:47

Last Modified:

25 Sep 2021 02:18

Publisher DOI:

10.1111/j.1365-294X.2010.04696.x

Uncontrolled Keywords:

adaptive genetic variation, amplified fragment length polymorphism, generalized estimating equations, landscape genomics, local adaptation

ARBOR DOI:

10.24451/arbor.15235

URI:

https://arbor.bfh.ch/id/eprint/15235

Actions (login required)

View Item View Item
Provide Feedback