Repository logo
  • English
  • Deutsch
  • Français
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. Sum-of-squares rank upper bounds for matching problems
 

Sum-of-squares rank upper bounds for matching problems

URI
https://arbor.bfh.ch/handle/arbor/45082
Version
Published
Identifiers
10.1007/s10878-017-0169-2
Date Issued
2018
Author(s)
Kurpisz, Adam Andrzej  
Leppänen, Samuli
Mastrolilli, Monaldo
Type
Article
Language
English
Subjects

Sum-of-squares hierar...

Integrality gap

Matching problem Math...

90C22

Abstract
The matching problem is one of the most studied combinatorial optimization problems in the context of extended formulations and convex relaxations. In this paper we provide upper bounds for the rank of the sum-of-squares/Lasserre hierarchy for a family of matching problems. In particular, we show that when the problem formulation is strengthened by incorporating the objective function in the constraints, the hierarchy requires at most ⌈ k2⌉ levels to refute the existence of a perfect matchingin an odd clique of size 2k + 1.
DOI
https://doi.org/10.24451/dspace/11793
Publisher DOI
10.1007/s10878-017-0169-2
Journal
Journal of Combinatorial Optimization
ISSN
1382-6905
Publisher URL
https://link.springer.com/article/10.1007/s10878-017-0169-2
Organization
Wirtschaft  
Volume
36
Publisher
Springer
Submitter
Kurpisz, Adam Andrzej
Citation apa
Kurpisz, A. A., Leppänen, S., & Mastrolilli, M. (2018). Sum-of-squares rank upper bounds for matching problems. In Journal of Combinatorial Optimization (Vol. 36). Springer. https://doi.org/10.24451/dspace/11793
File(s)
Loading...
Thumbnail Image

open access

Name

s10878-017-0169-2.pdf

Description
Version published
License
Publisher Natlic
Size

477.27 KB

Format

Adobe PDF

Checksum (MD5)

6d6aac977482ff9d6de922a2eb874910

About ARBOR

Built with DSpace-CRIS software - System hosted and mantained by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback
  • Our institution