Repository logo
  • English
  • Deutsch
  • Français
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. Improving Local Maxima-based Individual Tree Detection using statistically modelled Forest Structure Information
 

Improving Local Maxima-based Individual Tree Detection using statistically modelled Forest Structure Information

URI
https://arbor.bfh.ch/handle/arbor/34930
Version
Published
Date Issued
2022-05-27
Author(s)
Schaller, Christoph  
Ginzler, Christian
van Loon, Emiel
Moos, Christine  
Dorren, Luuk  
Type
Conference Paper
Language
English
Subjects
GA Mathematical geography. Cartography
QA75 Electronic computers. Computer science
SD Forestry
DOI
10.24451/arbor.17817
https://doi.org/10.24451/arbor.17817
Publisher DOI
10.5194/egusphere-egu22-11723
Publisher URL
https://www.egu22.eu/
Organization
Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften  
Multifunktionale Waldwirtschaft  
Gebirgswald, Naturgefahren und GIS  
Conference
EGU General Assembly 2022
Submitter
Schaller, Christoph
Citation apa
Schaller, C., Ginzler, C., van Loon, E., Moos, C., & Dorren, L. (2022). Improving Local Maxima-based Individual Tree Detection using statistically modelled Forest Structure Information. EGU General Assembly 2022. https://doi.org/10.24451/arbor.17817
File(s)
Loading...
Thumbnail Image

open access

Name

EGU22-11723-print.pdf

License
Attribution 4.0 International
Version
published
Size

291.69 KB

Format

Adobe PDF

Checksum (MD5)

8e35f7215ef29735379762ac059901ca

About ARBOR

Built with DSpace-CRIS software - System hosted and mantained by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback
  • Our institution