Repository logo
  • English
  • Deutsch
  • Français
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. Obesity Entity Extraction from Real Outpatient Records: When Learning-Based Methods Meet Small Imbalanced Medical Data Sets
 

Obesity Entity Extraction from Real Outpatient Records: When Learning-Based Methods Meet Small Imbalanced Medical Data Sets

URI
https://arbor.bfh.ch/handle/arbor/40451
Version
Published
Date Issued
2019
Author(s)
Deng, Yihan
Dolog, Peter
Gass, Jorn-Markus
Denecke, Kerstin  
Type
Conference Paper
Language
English
ISBN
978-1-7281-2286-1
DOI
10.24451/arbor.9020
https://doi.org/10.24451/arbor.9020
Publisher DOI
10.1109/CBMS.2019.00087
ISSN
2372-9198
Publisher URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8787533
Organization
Institute for Patient-centered Digital Health  
Technik und Informatk  
Conference
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)
Publisher
IEEE
Submitter
Denecke, Kerstin
Citation apa
Deng, Y., Dolog, P., Gass, J.-M., & Denecke, K. (2019). Obesity Entity Extraction from Real Outpatient Records: When Learning-Based Methods Meet Small Imbalanced Medical Data Sets. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). IEEE. https://doi.org/10.24451/arbor.9020
File(s)
Loading...
Thumbnail Image

restricted

Name

08787533.pdf

License
Publisher
Version
published
Size

190.45 KB

Format

Adobe PDF

Checksum (MD5)

8b2e99dc30bcd7f6edf5ba268eb30107

About ARBOR

Built with DSpace-CRIS software - System hosted and mantained by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback
  • Our institution