Repository logo
  • English
  • Deutsch
  • Français
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. Assessing the Potentials of LLMs and GANs as State-of-the-Art Tabular Synthetic Data Generation Methods
 

Assessing the Potentials of LLMs and GANs as State-of-the-Art Tabular Synthetic Data Generation Methods

URI
https://arbor.bfh.ch/handle/arbor/44714
Version
Published
Date Issued
2024-09-27
Author(s)
Miletic, Marko  
Sariyar, Murat  
Editor(s)
Domingo-Ferrer, Josep
Universidad Rovira i Virgili
Önen, Melek
EURECOM
Type
Conference Paper
Language
English
Publisher DOI
10.1007/978-3-031-69651-0_25
Journal
Lecture Notes in Computer Science
Privacy in Statistical Databases
ISSN
0302-9743
Publisher URL
https://link.springer.com/chapter/10.1007/978-3-031-69651-0_25
Related URL
https://crises-deim.urv.cat/psd2024/
Organization
Technik und Informatk  
Institut für Optimierung und Datenanalyse IODA  
Issue
14915
Conference
Privacy in Statistical Databases: International Conference, PSD 2024: Sep 2024 Read More 2024 Proceeding
Publisher
Springer Nature Switzerland
Submitter
Sariyar, Murat
Citation apa
Miletic, M., & Sariyar, M. (2024). Assessing the Potentials of LLMs and GANs as State-of-the-Art Tabular Synthetic Data Generation Methods. In J. Domingo-Ferrer & M. Önen (Eds.), Lecture Notes in Computer Science (Issue 14915). Springer Nature Switzerland. https://arbor.bfh.ch/handle/arbor/44714
About ARBOR

Built with DSpace-CRIS software - System hosted and mantained by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback
  • Our institution