Repository logo
  • English
  • Deutsch
  • Français
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. Estimating grassland biomass using multispectral UAV imagery, DTM and a random forest algorithm
 

Estimating grassland biomass using multispectral UAV imagery, DTM and a random forest algorithm

URI
https://arbor.bfh.ch/handle/arbor/43794
Version
Published
Date Issued
2021-05-17
Author(s)
Sutter, Michael  
Aebischer, Philippe  
Reidy, Beat  
Type
Conference Paper
Language
English
Subjects

grassland

machine learning

random forest

NDVI

remote sensing

dry matter yield

Abstract
A prerequisite for efficient pasture management is the regular estimation of the dry matter yield (DMY) by means of a rising plate meter (RPM). With the latest generation of unmanned aerial vehicles (UAV) equipped with a real-time kinematic (RTK) positioning system and a multispectral camera, it should be possible to measure sward heights and to estimate dry matter yields. To investigate this possibility, we developed an algorithm enabling a digital terrain model to be calculated from the digital surface model of grassland. DMY is estimated using a random forest estimator. Initial estimates at a previously unseen site achieved a root-mean-square error (RMSE) of 332 kg DM ha-1. The results demonstrate that UAVs enable DMY predictions with an accuracy level close to RPM measurements. The underlying algorithm will be further developed and adapted to a wider variety of pasture types and meadows.
Subjects
QC Physics
S Agriculture (General)
SB Plant culture
ISBN
978-3-00-068789-1
DOI
10.24451/arbor.15032
https://doi.org/10.24451/arbor.15032
Series/Report No.
Grassland Science in Europe
Publisher URL
https://www.europeangrassland.org/en/infos/printed-matter/proceedings.html#c2329
Related URL
https://www.uni-kassel.de/tagung-konferenz/egf-2021/home/
Organization
Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften  
Agronomie  
Grasland und Wiederkäuersysteme  
Volume
26
Conference
Sensing – New Insights into Grassland Science and Practice : Proceedings of the 21st Symposium of the European Grassland Federation
Publisher
European Grassland Federation (EGF)
Submitter
SutterM
Citation apa
Sutter, M., Aebischer, P., & Reidy, B. (2021). Estimating grassland biomass using multispectral UAV imagery, DTM and a random forest algorithm (Vol. 26). European Grassland Federation (EGF). https://doi.org/10.24451/arbor.15032
Note
Die Erlaubnis, diese PDF-Datei im ARBOR-Repository zu veröffentlichen, wurde eingeholt
File(s)
Loading...
Thumbnail Image

open access

Name

EGF2021_Proceedings.pdf

License
Publisher
Version
published
Size

505.51 KB

Format

Adobe PDF

Checksum (MD5)

d38ccc335bed92a3d3ca6e6f9f39ff43

About ARBOR

Built with DSpace-CRIS software - System hosted and mantained by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback
  • Our institution