Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling

Bell, Michael; Flechard, Chris; Fauvel, Yannick; Häni, Christoph; Sintermann, Jörg; Jocher, Markus; Menzi, Harald; Hensen, Arjan; Neftel, Albrecht (2017). Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling Atmospheric Measurement Techniques, 10(5), pp. 1875-1892. Copernicus 10.5194/amt-10-1875-2017

[img]
Preview
Text
amt-10-1875-2017.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (1MB) | Preview

Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to "clean" patches on the field was also simulated, allowing both "net" and "gross" emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where "hotspots" of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30–40 %.

Item Type:

Journal Article (Original Article)

Division/Institute:

School of Agricultural, Forest and Food Sciences HAFL > Resource-efficient agricultural production systems

Name:

Bell, Michael;
Flechard, Chris;
Fauvel, Yannick;
Häni, Christoph;
Sintermann, Jörg;
Jocher, Markus;
Menzi, Harald;
Hensen, Arjan and
Neftel, Albrecht

Subjects:

G Geography. Anthropology. Recreation > GE Environmental Sciences
S Agriculture > SF Animal culture

ISSN:

1867-8548

Publisher:

Copernicus

Language:

English

Submitter:

Simon Lutz

Date Deposited:

19 Feb 2020 15:43

Last Modified:

19 Feb 2020 15:43

Publisher DOI:

10.5194/amt-10-1875-2017

ARBOR DOI:

10.24451/arbor.8478

URI:

https://arbor.bfh.ch/id/eprint/8478

Actions (login required)

View Item View Item
Provide Feedback