
Pseudo-Code Algorithms for Verifiable
Re-Encryption Mix-Nets

Rolf Haenni, Philipp Locher, Reto Koenig, and Eric Dubuis

Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{philipp.locher,rolf.haenni, reto.koenig,eric.dubuis}@bfh.ch

Abstract. Implementing the shuffle proof of a verifiable mix-net is one
of the most challenging tasks in the implementation of an electronic
voting system. For non-specialists, even if they are experienced software
developers, this task is nearly impossible to fulfill without spending an
enormous amount of resources into studying the necessary cryptographic
theory. In this paper, we present one of the existing shuffle proofs in a
condensed form and explain all the necessary technical details in cor-
responding pseudo-code algorithms. The goal of presenting the shuffle
proof in this form is to make it accessible to a broader audience and to
facilitate its implementation by non-specialists.

1 Introduction

Various cryptographic techniques have been developed to guarantee vote privacy
in verifiable electronic voting systems. In practice, processing the list of encrypted
votes through a verifiable re-encryption mix-net has become the dominating
approach in the last couple of years. Various systems developed by academics,
practitioners, and vendors are based on this approach, which imitates the physical
process of shaking a ballot box containing real votes on paper. While shuffling a
list of encryptions is a simple process from a cryptographic point of view, proving
that the shuffle has been preformed correctly is a much more difficult task.

For proving the correctness of a cryptographic shuffle, two provably secure
proof techniques are dominant in the literature [2, 8] (other methods exist,
but many of them have been proven insecure). Due to the complexity of the
underlying cryptography, implementing these techniques is almost impossible
for non-specialists. Given the manifold subtleties and pitfalls that need to be
considered in a cryptographic implementation of such a complexity, even an
experienced software developer with a broad cryptographic background may
struggle in getting everything right.

Alternatively, system developers may try to delegate the shuffle proof to an
existing software library, but such libraries are not available in large numbers.
To the best of our knowledge, the only professionally maintained implementation
is the Verificatum Mix-Net (VMN), which exists since 2008 [10,11].1 A few other
shuffle proof implementations have been realized, for example as part of the

1 See http://www.verificatum.com.

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
8
2
6
9
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
3
.
3
.
2
0
2
4

http://www.verificatum.com


UniCrypt library [6], but their intended area of application is mainly academic.
In the context of political elections, a practical problem of using third-party
libraries in an actual implementation is the complicated system certification
process, which gets more difficult with every additional dependency. Having the
smallest possible number of dependencies to non-standard libraries may therefore
be a desirable strategy for both system developers and election administrations.

In this paper, we focus on the shuffle proof proposed by Wikström and
Terelius [8, 9, 11]. In their original publications, the proof is split into an offline
and online part and covers options such as restrictions on the set of possible
permutations. Their approach also supports various types of objects to shuffle.
Such features are interesting from a theoretical point of view, but they are less
interesting for practical applications in the area of electronic elections. Tailored
pseudo-code algorithms for writing a verifier for VMN are given in [11], but
algorithms for generating the proofs are not included in that document.

In this paper, we describe both parts of the shuffle proof in one compact
form, while restricting ourselves to the most common use case of single ElGamal
encryptions. We summarize the cryptographic theory necessary to understand
the core proof mechanisms and provide detailed and comprehensive pseudo-code
algorithms for generating and verifying such proofs. The goal of presenting the
proof in this form is to make it accessible to a broader audience and to facilitate
its implementation by non-specialists. In this way, we hope to facilitate the dissem-
ination of shuffle proofs in electronic voting applications. Even without presenting
new results, we think this is an important contribution to the community.

The organization of the paper is as follows. In Section 2, we review the crypto-
graphic background that is necessary to understand the summary of Wikström’s
proof mechanisms given in Section 3. The pseudo-code algorithms for building
a verifiable ElGamal re-encryption mix-net are presented in Section 4. Enough
details are given for a software developer with little cryptographic background
to implement the proof without accomplishing a profound understanding of the
underlying mechanisms. Sections 2 and 3 may therefore be skipped by readers
focused in implementing the proof. Section 5 concludes the paper.

2 Cryptographic Background

Let G be a cyclic group of prime order q, for which the decisional Diffie-Hellman
(DDH) assumption is believed to hold. Since q is prime, every x ∈ G \ {1} is a
generator. Any such group would be suitable for Wikström’s shuffle proof, but
here we restrict ourselves to the subgroup Gq = {x2 mod p : 1 ≤ x ≤ p− 1} ⊂
Z∗p of quadratic residues modulo a safe prime p = 2q + 1. This is the most
common choice in practice. When working with Gq, the corresponding prime
field Zq = {0, ... , q − 1} of integers modulo q plays an important role to perform
computations in the exponent.



2.1 ElGamal Encryption

An ElGamal enryption scheme is a triple (KeyGen,Enc,Dec) of algorithms, which
operate on groups such as Gq ⊂ Z∗p, for which DDH holds [3]. The public
parameters of an ElGamal encryption scheme over Gq are the primes p and q
and a generator g ∈ Gq \ {1}. A suitable generator can be found by squaring an
arbitrary value x ∈ Z∗p \ {1, p− 1}, for example g = 22 = 4 is always a generator
of Gq (except for p = 5).

An ElGamal key pair is a tuple (sk, pk)← KeyGen(), where sk∈R Zq is the
randomly chosen private decryption key and pk = gsk ∈ Gq the corresponding
public encryption key. If m ∈ Gq denotes the plaintext to encrypt, then

Encpk(m, r) = (m · pkr, gr) ∈ Gq ×Gq

denotes the ElGamal encryption of m with randomization r∈R Zq. Note that the
bit length of an encryption e ← Encpk(m, r) is twice the bit length of p. For a
given encryption e = (a, b), the plaintext m can be recovered by using the private
decryption key sk to compute

m← Decsk(e) = a · b−sk.

For any given key pair (sk, pk) ← KeyGen(), it is easy to demonstrate that
Decsk(Encpk(m, r)) = m holds for all m ∈ Gq and r ∈ Zq.

The ElGamal encryption scheme is IND-CPA secure under the DDH assump-
tion and homomorphic with respect to multiplication. Therefore, component-wise
multiplication of two ciphertexts yields an encryption of the product of respective
plaintexts:

Encpk(m1, r1) · Encpk(m2, r2) = Encpk(m1m2, r1 + r2).

In a homomorphic encryption scheme like ElGamal, a given encryption e ←
Encpk(m, r) can be re-encrypted by multiplying e with an encryption of the
neutral element 1. The resulting re-encryption of e,

ReEncpk(e, r′) = e · Encpk(1, r′) = Encpk(m, r + r′),

is clearly an encryption of m with a fresh randomization r + r′.

2.2 Pedersen Commitments

The (extended) Pedersen commitment scheme is based on a cyclic group for
which the discrete logarithm (DL) assumption holds. In this document, we use
the same subgroup Gq ⊂ Z∗p of integers modulo p = 2q + 1 as in the ElGamal
encryption scheme. Let g, h1, ... , hN ∈ Gq \ {1} be independent generators of Gq,
which means that their relative logarithms are provably not known to anyone.

The Pedersen commitment scheme consists of two deterministic algorithms,
one for computing a commitment

Com(m, r) = gr
N∏
i=1

hmi
i ∈ Gq



to N messages m = (m1, ... ,mN ) ∈ Znq with randomization r∈R Zq, and one
for checking the validity of c← Com(m, r) when m and r are revealed (which
we do not require in this paper). In the special case of a single message m, we
write Com(m, r) = grhm using a second generator h independent from g. The
Pedersen commitment scheme is perfectly hiding and computationally binding
under the DL assumption.

In Wikström’s shuffle proof, we also require commitments to permutations
ψ : {1, ... , N} → {1, ... , N}. Let Bψ = (bij)N×N be the permutation matrix of ψ,
which consists of bits

bij =

{
1, if ψ(i) = j,

0, otherwise.

Note that in each row and each column in Bψ, exactly one bit is set to 1. If
bj = (b1,j , ... , bN,j) denotes the j-th column of Bψ, then

Com(bj , rj) = grj
N∏
i=1

h
bij
i = grjhi, for i = ψ−1(j),

is a commitment to bj with randomization rj . By computing such commitments
to all columns, we obtain a permutation commitment

Com(ψ, r) = (Com(b1, r1), ... ,Com(bN , rN ))

to ψ with randomizations r = (r1, ... , rN ). Note that the size of such a c ←
Com(ψ, r) is O(N).

2.3 Non-Interactive Preimage Proofs

Non-interactive zero-knowledge proofs of knowledge are important building blocks
in cryptographic protocol design. In a non-interactive preimage proof

NIZKP [(x) : y = φ(x)]

for a one-way group homomorphism φ : X → Y , the prover proves knowledge of
a secret preimage x = φ−1(y) ∈ X for a public value y ∈ Y without revealing
anything about x [7].

The most common construction of a non-interactive preimage proof results
from combining the so-called Σ-protocol with the Fiat-Shamir heuristic [4].
Generating a preimage proof (t, s)← GenProofφ(x, y) for φ consists of picking a
random value w∈RX and computing a commitment t = φ(w) ∈ Y , a challenge
c = Hash(y, t), and a response s = w + c · x ∈ X. Verifying a proof includes
computing c = Hash(y, t) and checking t = y−c ·φ(s). For a given proof π = (t, s),
this process is denoted by b ← CheckProofφ(π, y), where b ∈ {0, 1} indicates if
the proof is valid or not. Clearly, we have

CheckProofφ(GenProofφ(x, y), y) = 1

for all x ∈ X and y = φ(x) ∈ Y . Proofs constructed in this way are perfect
zero-knowledge in the random oracle model, which in practice is approximated
with the use of a collision-resistant hash function.



3 Summary of Wikström’s Shuffle Proof

A cryptographic shuffle of a list e = (e1, ... , eN ) of ElGamal encryptions ei ←
Encpk(mi, ri) is another list of ElGamal encryptions e′ = (e′1, ... , e

′
N ), which

contains the same plaintexts mi in permuted order. Such a shuffle can be generated
by selecting a random permutation ψ : {1, ... , N} → {1, ... , N} from the set ΨN of
all such permutations (e.g., using Knuth’s shuffle algorithm [5]) and by computing
re-encryptions e′i ← ReEncpk(ej , r

′
j) for j = ψ(i). We write

e′ ← Shufflepk(e, r′, ψ)

for an algorithm performing this task, where r′ = (r′1, ... , r
′
N ) denotes the ran-

domization used to re-encrypt the input ciphertexts.
Proving the correctness of a cryptographic shuffle can be realized by proving

knowledge of ψ and r′, which generate e′ from e in a cryptographic shuffle:

NIZKP [(ψ, r′) : e′ = Shufflepk(e, r′, ψ)].

Unfortunately, since Shufflepk does not define a homomorphism, we can not apply
the standard technique for preimage proofs. Therefore, the strategy of what
follows is to find an equivalent formulation using a homomorphism.

The shuffle proof according to Wikström and Terelius consists of two parts, an
offline and an online proof. In the offline proof, the prover computes a commitment
c← Com(ψ, r) and proves that c is a commitment to a permutation matrix. In
the online proof, the prover demonstrates that the committed permutation matrix
has been used in the shuffle to obtain e′ from e. The two proofs can be kept
separate, but combining them into a single proof results in a slightly more efficient
method. Here, we only present the combined version of the two proofs and we
restrict ourselves to the case of shuffling ElGamal ciphertexts.

From a top-down perspective, Wikström’s shuffle proof can be seen as a
two-layer proof consisting of a top layer responsible for preparatory work such
as computing the commitment c← Com(ψ, r) and a bottom layer computing a
standard preimage proof.

3.1 Preparatory Work

There are two fundamental ideas behind Wikström’s shuffle proof. The first idea
is based on a simple theorem that states that if Bψ = (bij)N×N is an N -by-N -
matrix over Zq and (x1, ..., xN ) a vector of N independent variables, then Bψ

is a permutation matrix if and only if
∑N
j=1 bij = 1, for all i ∈ {1, ... , N}, and∏N

i=1

∑N
j=1 bijxi =

∏N
i=1 xi. The first condition means that the elements of each

row of Bψ must sum up to one, while the second condition requires that Bψ has
exactly one non-zero element in each row.

Based on this theorem, the general proof strategy is to compute a permutation
commitment c← Com(ψ, r) and to construct a zero-knowledge argument that
the two conditions of the theorem hold for Bψ. This implies then that c is a
commitment to a permutation matrix without revealing ψ or Bψ.



For c = (c1, ... , cN ), r = (r1, ... , rN ), and r̄ =
∑N
j=1 rj , the first condition

leads to the following equality:

N∏
j=1

cj =

N∏
j=1

grj
N∏
i=1

h
bij
i = g

∑N
j=1 rj

N∏
i=1

h
∑N

j=1 bij
i = gr̄

N∏
i=1

hi = Com(1, r̄). (1)

Similarly, for arbitrary values u = (u1, ... , uN ) ∈ ZNq , u′ = (u′1, ... , u
′
N ) ∈ ZNq ,

with u′i =
∑N
j=1 bijuj = uj for j = ψ(i), and r̃ =

∑N
j=1 rjuj , the second condition

leads to two equalities:

N∏
i=1

u′i =

N∏
j=1

uj , (2)

N∏
j=1

c
uj

j =

N∏
j=1

(grj
N∏
i=1

h
bij
i )uj = g

∑N
j=1 rjuj

N∏
i=1

h
∑N

j=1 bijuj

i = gr̃
N∏
i=1

h
u′
i
i

=Com(u′, r̃), (3)

By proving that (1), (2), and (3) hold, and from the independence of the genera-
tors, it follows that both conditions of the theorem are true and finally that c is
a commitment to a permutation matrix. In the interactive version of Wikström’s
proof, the prover obtains u = (u1, ... , uN ) ∈ ZNq in an initial message from the
verifier, but in the non-interactive version we derive these values from the public
inputs, for example by computing ui ← Hash((e, e′, c), i).

The second fundamental idea of Wikström’s proof is based on the homomor-
phic property of the ElGamal encryption scheme and the following observation
for values u and u′ defined in the same way as above:

N∏
i=1

(e′i)
u′
i =

N∏
j=1

ReEncpk(ej , r
′
j)
uj =

N∏
j=1

ReEncpk(e
uj

j , r
′
juj)

= ReEncpk(

N∏
j=1

e
uj

j ,

N∑
j=1

r′juj) = Encpk(1, r′) ·
N∏
j=1

e
uj

j , (4)

for r′ =
∑N
j=1 r

′
juj . By proving (4), it follows that every e′i is a re-encryption

of ej for j = ψ(i). This is the desired property of the cryptographic shuffle. By
putting (1) to (4) together, the shuffle proof can therefore be rewritten as follows:

NIZKP

(r̄, r̃, r′,u′) :

∏N
j=1 cj = Com(1, r̄)

∧
∏N
i=1 u

′
i =

∏N
j=1 uj

∧
∏N
j=1 c

uj

j = Com(u′, r̃)

∧
∏N
i=1(e′i)

u′
i = Encpk(1, r′) ·

∏N
j=1 e

uj

j

. (5)

The last step of the preparatory work results from replacing in the above expres-
sion the equality of products,

∏N
i=1 u

′
i =

∏N
j=1 uj , by an equivalent expression



based on a chained list ĉ = {ĉ1, ... , ĉN} of Pedersen commitments with different
generators. For ĉ0 = h and random values r̂ = (r̂1, ... , r̂N ) ∈ ZNq , we define

ĉi = gr̂i ĉ
u′
i
i−1, which leads to ĉN = Com(u, r̂) for u =

∏N
i=1 ui and

r̂ =

N∑
i=1

r̂i

N∏
j=i+1

u′j .

Applying this replacement leads to the following final result, on which the proof
construction is based:

NIZKP

(r̄, r̂, r̃, r′, r̂,u′) :

∏N
j=1 cj = Com(1, r̄)

∧ ĉN = Com(u, r̂) ∧
[∧N

i=1(ĉi = gr̂i ĉ
u′
i
i−1)

]
∧
∏N
j=1 c

uj

j = Com(u′, r̃)

∧
∏N
i=1(e′i)

u′
i = Encpk(1, r′) ·

∏N
j=1 e

uj

j

. (6)

To summarize the preparatory work for the proof generation, we give a list of all
necessary computations:

– Pick r = (r1, ... , rN )∈R ZNq and compute c← Com(ψ, r).
– For i = 1, ... , N , compute ui ← Hash((e, e′, c), i), let u′i = uψ(i), pick r̂i ∈R Zq,

and compute ĉi = gr̂i ĉ
u′
i
i−1.

– Let r̂ = (r̂1, ... , r̂N ) and ĉ = (ĉ1, ... , ĉN ).

– Compute r̄ =
∑N
j=1 rj , r̂ =

∑N
i=1 r̂i

∏N
j=i+1 u

′
j , r̃ =

∑N
j=1 rjuj , and r′ =∑N

j=1 r
′
juj .

Note that r̂ can be computed in linear time by generating the values
∏N
j=i+1 u

′
j

in an incremental manner by looping backwards over j = N, ... , 1.

3.2 Preimage Proof

By rearranging all public values to the left-hand side and all secret values to the
right-hand side of each equation, we can derive a homomorphic one-way function
from the final expression of the previous subsection. In this way, we obtain the
homomorphic function

φ(x1, x2, x3, x4, x̂,x
′)

= (gx1 , gx2 ,Com(x′, x3),ReEncpk(

N∏
i=1

(e′i)
x′
i ,−x4), (gx̂1 ĉ

x′
1

0 , ... , gx̂N ĉ
x′
N

N−1)), (7)

which maps inputs (x1, x2, x3, x4, x̂,x
′) ∈ X of length 2N + 4 into outputs

(y1, y2, y3, y4, ŷ) = φ(x1, x2, x3, x4, x̂,x
′) ∈ Y

of length N + 5, i.e., X = Z4
q × ZNq × ZNq is the domain and Y = G3

q ×G2
q ×GNq

the co-domain of φ. Note that we slightly modified the order of the five sub-
functions of φ for better readability. By applying this function to the secret values



(r̄, r̂, r̃, r′, r̂,u′), we get a tuple of public values,

(c̄, ĉ, c̃, e′, ĉ) = (

∏N
j=1 cj∏N
j=1 hj

,
ĉN
hu
,

N∏
j=1

c
uj

j ,

N∏
j=1

e
uj

j , (ĉ1, ... , ĉN )), (8)

which can be derived from the public values e, e′, c, ĉ, and pk (and from u,
which is derived from e, e′, and c).

To summarize, we have a homomorphic one-way function φ : X → Y , secret
values x = (r̄, r̂, r̃, r′, r̂,u′) ∈ X, and public values y = (c̄, ĉ, c̃, e′, ĉ) = φ(x) ∈ Y .
We can therefore generate a non-interactive preimage proof

NIZKP

(r̄, r̂, r̃, r′, r̂,u′) :

c̄ = gr̄ ∧ ĉ = gr̂ ∧ c̃ = Com(u′, r̃)

∧ e′ = ReEncpk(
∏N
i=1(e′i)

u′
i ,−r′)

∧
[∧N

i=1(ĉi = gr̂i ĉ
u′
i
i−1)

]
, (9)

using the standard procedure from Section 2.3. The result of such a proof
generation, (t, s) ← GenProofφ(x, y), consists of two values t = φ(w) ∈ Y of
length N + 5 and s = ω + c · x ∈ X of length 2N + 4, which we obtain from
picking w∈RX (of length 2N + 4) and computing c = Hash(y, t). Alternatively,
a different c = Hash(y′, t) could be derived directly from the public values
y′ = (e, e′, c, ĉ, pk), which has the advantage that y = (c̄, ĉ, c̃, e′, ĉ) needs not to
be computed explicitly during the proof generation.

This preimage proof, together with the two lists of commitments c and ĉ, leads
to the desired non-interactive shuffle proof NIZKP [(ψ, r′) : e′ = Shufflepk(e, r′, ψ)].
We denote the generation and verification of a such proof π = (t, s, c, ĉ) by

π ← GenProofpk(e, e′, r′, ψ)

b← CheckProofpk(π, e, e′).

respectively. Corresponding algorithms are depicted in Algorithm 4.3 and Al-
gorithm 4.6. Note that generating the proof requires 7N + 4 and verifying the
proof 9N + 11 modular exponentiations in Gq. The proof itself consists of 5N + 9
elements (2N + 4 elements from Zq and 3N + 5 elements from Gq).

4 Pseudo-Code Algorithms

Based on the background information given in the previous two sections, we will
now transform the mathematical description of the proof into detailed pseudo-
code algorithms. This will give us an even closer look at how the shuffle proof
works. Algorithms 4.1, 4.3 and 4.6 are the three main algorithms for performing
the shuffle, generating the proof, and checking the validity of a proof, respectively.
We decided to give almost monolithic descriptions for each of these algorithms
with little dependencies to sub-routines.

There are some public parameters, which we do not pass explicitly as argu-
ments to each algorithm: the prime modulo p of the group Gq ⊂ Z∗p, the group



order q = (p−1)/2, the main independent group generators g and h, and N other
independent generators h1, ... , hN . We do not give algorithms for finding suitable
group parameters or give recommendations about their sizes, we simply assume
that they are publicly known.2 For a deterministic algorithm that generates
an arbitrary number of independent generators, we refer to the NIST standard
FIPS PUB 186-4 [1, Appendix A.2.3]. The deterministic nature of this algorithm
enables the independence of the generators to be publicly verified.

Most numeric calculations in the given algorithms are either performed
modulo p or modulo q. For maximal clarity, we indicate the modulus in each
individual case. We suppose that efficient algorithms are available for computing
modular exponentiations xy mod p and modular inverses x−1 mod p. Divisions
x/y mod p are handled as xy−1 mod p and exponentiations x−y mod p with
negative exponents as (x−1)y mod p or (xy)−1 mod p. We also assume that readers
are familiar with mathematical notations for sums and products, such that
implementing expressions like

∑N
i=1 xi or

∏N
i=1 xi is straightforward.

An important precondition for every algorithm is the validity of the input
parameters, for example that an ElGamal encryption e = (a, b) is an element of
Gq ×Gq or that given input lists are of equal length. We specify all preconditions
for every algorithm, but we do not give explicit code to perform corresponding
checks. However, as many attacks on mix-nets are based on infiltrating invalid
parameters, we stress the importance of conducting such checks in an actual
implementation. For testing group membership x ∈ Gq of quadratic residues
modulo p, we refer to algorithms for computing the Jacobi symbol

(
x
p

)
, for

example in [1, pp. 76–77].
Finally, we assume that efficient and secure algorithms are available for

computing cryptographic hash values h ← Hash(x) of arbitrary mathematical
objects and for picking uniform elements r∈R Zq (or more generally r∈R [a, b]).
Writing such algorithms is a difficult problem on its own, which we cannot address
here. However, such algorithms are usually available in standard cryptographic
libraries of modern programming languages.

4.1 Generating the Shuffle

The input of a cryptographic shuffle e′ ← Shufflepk(e, r′, ψ) is a list of e =
(e1, ... , eN ) encryptions ei, in our case ElGamal encryptions ei = (ai, bi) ∈ G2

q,
which need to be re-encrypted and permuted. In Algorithm 4.1, we describe this
procedure, which includes picking a random permutation ψ = (j1, ... , jN ) ∈ ΨN
(line 2) and a list r′ = (r′1, ... , r

′
N ) of re-encryption randomizations (line 4). The

re-encryptions are computed in a loop over all input encryptions (lines 3–7) and
permuted by re-arranging them according to ψ (line 8). The random values ψ
and r′ are returned together with e′, because they are required as secret inputs
to the proof generation.

The above shuffling algorithm calls one sub-routine for generating a ran-
dom permutation ψ ∈ ΨN . We present a procedure for this problem in Algo-

2 See https://www.keylength.com for current recommendations.

https://www.keylength.com


1 Algorithm: GenShuffle(e, pk)

Input: ElGamal encryptions e = (e1, ... , eN ), ei = (ai, bi) ∈ G2
q

Encryption key pk ∈ Gq

2 ψ ← GenPermutation(N) // ψ = (j1, ... , jN ), see Algorithm 4.2
3 for i = 1, ... , N do
4 r′i ∈R Zq

5 a′i ← ai pk
r′i mod p

6 b′i ← bi g
r′i mod p

7 e′i ← (a′i, b
′
i)

8 e′ ← (e′j1 , ... , e
′
jN

)
9 r′ ← (r′1, ... , r

′
N )

10 return (e′, r′, ψ) // e′ ∈ (G2
q)N , r′ ∈ ZN

q , ψ ∈ ΨN

Algorithm 4.1: Generates a random permutation ψ ∈ ΨN and uses it to shuffle a
given list e of ElGamal encryptions into a shuffled list e′.

rithm 4.2, which is essentially Knuth’s shuffle algorithm [5, pp. 139–140]. The
auxiliary variable I is an integer array of size N , which is addressed with in-
dices i, k ∈ {1, ... , N}. After initializing the array with integers 1, ... , N (line 2),
N swap operations are performed with indices chosen at random (lines 3–6).
Knuth’s algorithm is proven to implement a uniform distribution over all possible
permutations.

1 Algorithm: GenPermutation(N)

Input: Permutation size N ∈ N
2 I ← 〈1, ... , N〉
3 for i = 1, ... , N do
4 k∈R {i, ... , N}
5 ji ← I[k]
6 I[k]← I[i]

7 ψ ← (j1, ... , jN )
8 return ψ // ψ ∈ ΨN

Algorithm 4.2: Generates a random permutation ψ ∈ ΨN following Knuth’s shuffle
algorithm.

4.2 Generating the Shuffle Proof

The mathematical description of the shuffle proof in Section 3 is the basis for
procedure shown in Algorithm 4.3. The core of the algorithm is the preimage proof
specified in (9), which requires some preparatory work. The first preparatory step
is the generation of the permutation commitment c (line 2), which we delegate
to a separate subroutine. The second preparatory step is the computation of



values u, which are derived from the public inputs e and e′ and the permutation
commitment c, and which are permuted according to ψ into u′ (lines 3–6). The
next preparatory step is the computation of the commitment chain ĉ in a separate
subroutine with c0 = h as initial value (line 7). Finally, the last step consists in
computing the secret inputs r̄, r̂, r̃, and r′ for the preimage proof (lines 8–14).

The implementation of the preimage proof starts on line 15, where 2N + 4
values wi, ŵi, w

′
i ∈ Zq are selected at random (lines 15–18). They are needed

for the computation of the N + 5 commitments ti, t̂i ∈ Gq (lines 19–25), which
follows the definition of the homomorphic one-way function φ as specified in (7).
The commitments and all public values are then used to compute the challenge c
(lines 26–27), which determines to 2N + 4 responses si, ŝi, s

′
i ∈ Zq (lines 28–33).

The algorithm ends with returning the tuples t and s of all commitments and
responses, respectively, together with the permutation commitment c and the
commitment chain ĉ.

Each of the two auxiliary algorithms called during the proof generation returns
a list of Pedersen commitments. In the case of Algorithm 4.4, the return value
is actually a commitment to the permutation ψ. The procedure for computing
such a permutation commitment is described in Section 2.2. The return value
of Algorithm 4.5 consists of Pedersen commitments that are linked over one of
the two generators. The role of this commitment chain has been discussed in
Section 3 and does not require further explanations.

4.3 Verifying the Shuffle Proof

A shuffle proof π = (t, c, c, ĉ) generated by Algorithm 4.3 consists of the result
(t, s) of the preimage proof and the two lists of commitments c and ĉ obtained as
a result of several preparatory steps. Algorithm 4.6 shows the necessary steps of
checking the validity of such a proof. The additional input values of this algorithm
are two lists of encryptions e and e′ and the public key pk.

The first preparatory step in the algorithm is the derivation of the values
u from the inputs e, e′, and c (lines 2–3). The second preparatory step is the
computation of the public values c̄, ĉ, c̃, and e′ = (a′, b′) (lines 5–9) according to
their definition given in (8). Nothing else is needed to perform the verification
of the preimage proof (t, s) according to the standard procedure described in
Section 2.3. That is, the challenge c can be derived from the public values e, e′,
c, ĉ, and pk (line 11), which then leads to N + 5 values t′i, t̂

′
i ∈ Gq by applying

the one-way function φ to s (lines 12–17). The resulting values are compared to
respective values ti, t̂i ∈ Gq included in the proof, and if all values match, the
proof is valid (line 18).

5 Conclusion

In this paper, we have given a compact summary of Wikström’s shuffle proof and
a detailed description of the proof generation and verification processes in form
of pseudo-code algorithms. The level of detail of these algorithms is such that



1 Algorithm: GenProof(e, e′, r′, ψ, pk)

Input: ElGamal encryptions e = (e1, ... , eN ), ei = (ai, bi) ∈ G2
q

Shuffled ElGamal encryptions e′ = (e′1, ... , e
′
N ), e′i = (a′i, b

′
i) ∈ G2

q

Re-encryption randomizations r′ = (r′1, ... , r
′
N ), r′i ∈ Zq

Permutation ψ = (j1, ... , jN ) ∈ ΨN

Encryption key pk ∈ Gq

2 (c, r)← GenCommitment(ψ) // c = (c1, ... , cN ), r = (r1, ... , rN )
3 for i = 1, ... , N do
4 ui ← Hash((e, e′, c), i)
5 u′i ← uji

6 u← (u1, ... , uN ), u′ ← (u′1, ... , u
′
N )

7 (ĉ, r̂)← GenCommitmentChain(h,u′) // ĉ = (ĉ1, ... , ĉN ), r̂ = (r̂1, ... , r̂N )

8 r̄ ←
∑N

i=1 ri mod q
9 vN ← 1

10 for i = N − 1, ... , 1 do
11 vi ← u′i+1vi+1 mod q

12 r̂ ←
∑N

i=1 r̂ivi mod q

13 r̃ ←
∑N

i=1 riui mod q

14 r′ ←
∑N

i=1 r
′
iui mod q

15 for i = 1, ... , 4 do
16 ωi ∈R Zq

17 for i = 1, ... , N do
18 ω̂i ∈R Zq, ω′i ∈R Zq

19 t1 ← gω1 mod p
20 t2 ← gω2 mod p

21 t3 ← gω3
∏N

i=1 h
ω′
i

i mod p

22 (t4,1, t4,2)← (pk−ω4
∏N

i=1(a′i)
ω′
i mod p, g−ω4

∏N
i=1(b′i)

ω′
i mod p)

23 ĉ0 ← h
24 for i = 1, ... , N do

25 t̂i ← gω̂i ĉ
ω′
i

i−1 mod p

26 y ← (e, e′, c, ĉ, pk), t← (t1, t2, t3, (t4,1, t4,2), (t̂1, ... , t̂N ))
27 c← Hash(y, t)
28 s1 ← ω1 + c · r̄ mod q
29 s2 ← ω2 + c · r̂ mod q
30 s3 ← ω3 + c · r̃ mod q
31 s4 ← ω4 + c · r′ mod q
32 for i = 1, ... , N do
33 ŝi ← ω̂i + c · r̂i mod q, s′i ← ω′i + c · u′i mod q

34 s← (s1, s2, s3, s4, (ŝ1, ... , ŝN ), (s′1, ... , s
′
N ))

35 π ← (t, s, c, ĉ)

36 return π // π ∈ (G3
q ×G2

q ×GN
q )× (Z4

q × ZN
q × ZN

q )×GN
q ×GN

q

Algorithm 4.3: Generates a proof of shuffle for given ElGamal encryptions e and
e′ according to Wikström’s method.



1 Algorithm: GenCommitment(ψ)

Input: Permutation ψ = (j1, ... , jN ) ∈ ΨN

2 for i = 1, ... , N do
3 rji ∈R Zq

4 cji ← grjihi mod p

5 c← (c1, ... , cN )
6 r← (r1, ... , rN )

7 return (c, r) // c ∈ GN
q , r ∈ ZN

q

Algorithm 4.4: Generates a commitment c = Com(ψ, r) to a permutation ψ by
committing to the columns of the corresponding permutation matrix.

1 Algorithm: GenCommitmentChain(c0,u)

Input: Initial commitment c0 ∈ Gq

Public challenges u = (u1, ... , uN ), ui ∈ Zq

2 for i = 1, ... , N do
3 ri ∈R Zq

4 ci ← gricui
i−1 mod p

5 c← (c1, ... , cN )
6 r← (r1, ... , rN )

7 return (c, r) // c ∈ GN
q , r ∈ ZN

q

Algorithm 4.5: Generates a commitment chain c0 → c1 → · · · → cN relative to a
list of public challenges u and starting with a given commitment c0.

even developers with little background in cryptography can implement to proof
by coding carefully line after line. This solves an important problem of system
developers in charge of such an implementation. In the past, many of them have
struggled when facing the complexity of the underlying cryptography. With this
paper at hand, they have now a detailed guideline which they can follow without
fully understanding the theory. We expect that a robust implementation for
someone that starts from scratch will now be possible within a matter of weeks
(instead of months at least).

To verify the above claim, we have given a draft of this paper to an experienced
software developer with no special education or experience in implementing
cryptographic algorithms. Within approximately four weeks of part-time work,
he managed to produce high-quality Java 8 code of everything that is needed for
building a verifiable mix-net. Based on the precise description of our paper, he
even managed—for a very small group Gq—to calculate a shuffle proof entirely
by hand, and his test suite reaches nearly 100% code coverage. Using the native
GMP library for fast big integer calculations and parallel streams from Java 8 to
exploit the power of all available cores, the performance of his code is already



1 Algorithm: CheckProof(π, e, e′, pk)

Input: Shuffle proof π = (t, s, c, ĉ), t = (t1, t2, t3, (t4,1, t4,2), (t̂1, ... , t̂N )),
s = (s1, s2, s3, s4, (ŝ1, ... , ŝN ), (s′1, ... , s

′
N )), c = (c1, ... , cN ),

ĉ = (ĉ1, ... , ĉN )
ElGamal encryptions e = (e1, ... , eN ), ei = (ai, bi) ∈ G2

q

Shuffled ElGamal encryptions e′ = (e′1, ... , e
′
N ), e′i = (a′i, b

′
i) ∈ G2

q

Encryption key pk ∈ Gq

2 for i = 1, ... , N do
3 ui ← Hash((e, e′, c), i)

4 u← (u1, ... , uN )

5 c̄←
∏N

i=1 ci/
∏N

i=1 hi mod p

6 u←
∏N

i=1 ui mod q
7 ĉ← ĉN/h

u mod p

8 c̃←
∏N

i=1 c
ui
i mod p

9 (a′, b′)← (
∏N

i=1 a
ui
i mod p,

∏N
i=1 b

ui
i mod p)

10 y ← (e, e′, c, ĉ, pk)
11 c← Hash(y, t)
12 t′1 ← c̄−cgs1 mod p
13 t′2 ← ĉ−cgs2 mod p

14 t′3 ← c̃−cgs3
∏N

i=1 h
s′i
i mod p

15 (t′4,1, t
′
4,2)← ((a′)−cpk−s4

∏N
i=1(a′i)

s′i mod p, (b′)−cg−s4
∏N

i=1(b′i)
s′i mod p)

16 for i = 1, ... , N do

17 t̂′i ← ĉ−c
i gŝi ĉ

s′i
i−1 mod p

18 return

(t1 = t′1) ∧ (t2 = t′2) ∧ (t3 = t′3) ∧ (t4,1 = t′4,1) ∧ (t4,2 = t′4,1) ∧
[∧N

i=1(t̂i = t̂′i)
]

Algorithm 4.6: Checks the correctness of a shuffle proof π generated by Algo-
rithm 4.3. The public values are the ElGamal encryptions e and e′ and the public
encryption key pk.

well-optimized. This work has been conducted in the context of the CHVote
Internet voting project of the State of Geneva in Switzerland. The complete
source code is available in a public repository on GitHub.3 We have also assigned
this implementation task to a group of students with little background knowledge
in cryptography and security. This is an ongoing project, we expect the results in
a couple of months in form of a Bachelor thesis. A goal of this work is to obtain
a second independent implementation and to use it for mutual tests.

By compiling the theory of Wikström’s shuffle proof into a single paper
and by facilitating the implementation of verifiable mix-nets with pseudo-code
algorithms, we hope that this paper will help to disperse this technology even
further.

3 https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc

https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc


References

[1] Digital signature standard (DSS). FIPS PUB 186-4, National Institute of
Standards and Technology (NIST) (2013)

[2] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT’12, 31st An-
nual International Conference on Theory and Applications of Cryptographic
Techniques. pp. 263–280. LNCS 7237, Cambridge, UK (2012)

[3] El Gamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84,
Advances in Cryptology. pp. 10–18. LNCS 196, Springer, Santa Barbara,
USA (1984)

[4] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86, 6th
Annual International Cryptology Conference on Advances in Cryptology. pp.
186–194. LNCS 263, Santa Barbara, USA (1986)

[5] Knuth, D.E.: The Art of Computer Programming, vol. 2, Seminumerical
Algorithms. Addison Wesley, 3rd edn. (1997)

[6] Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof
for electronic voting systems. In: Plödereder, E., Grunske, L., Schneider,
E., Ull, D. (eds.) INFORMATIK 2014, 44. Jahrestagung der Gesellschaft
für Informatik. pp. 1391–1400. No. P-232 in Lecture Notes in Informatics,
Stuttgart, Germany (2014)

[7] Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B.
(ed.) AFRICACRYPT’09, 2nd International Conference on Cryptology in
Africa. pp. 272–286. LNCS 5580, Gammarth, Tunisia (2009)

[8] Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT’10, 3rd International Conference on Cryp-
tology in Africa. pp. 100–113. LNCS 6055, Stellenbosch, South Africa (2010)

[9] Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C.,
González Nieto, J. (eds.) ACISP’09, 14th Australasian Conference on Infor-
mation Security and Privacy. pp. 407–421. LNCS 5594, Brisbane, Australia
(2009)

[10] Wikström, D.: User Manual for the Verificatum Mix-Net Version 1.4.0.
Verificatum AB, Stockholm, Sweden (2014)

[11] Wikström, D.: How to Implement a Stand-alone Verifier for the Verificatum
Mix-Net: VMN Version 3.0.2. Verificatum AB, Stockholm, Sweden (2016)

Acknowledgments. We thank the anonymous reviewers for their thorough
reviews and appreciate their comments and suggestions.


