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The performance of the prototype was validated in over-
night comparative studies, involving two healthy volunteers, 
with polysomnography as the reference. The prototype 
has successfully classified limb movements, with a sensi-
tivity and specificity of 88.9 and 76.8% respectively, and 
has achieved accurate respiratory and heart rate measure-
ment performance with overall absolute errors of 1 breath 
per minute for respiration and 3 beats per minute for heart 
rate. This pilot study shows that K-band Doppler radar and 
wavelet transform MRA seem to be valid for overnight sleep 
marker assessment. The contact-less approach might offer 
a promising solution for home-based sleep monitoring and 
assessment.

Keywords  Sleep-wake disorders · Contact-less · Doppler 
radar · Wavelet transform · Monitoring

1  Introduction

Sleep is an important pillar of well-being, and sleep qual-
ity is associated with short and long-term effects on health. 
An estimated 45 million persons in Europe [1] are annually 
subjected to sleep-wake disorders. Insomnia, prevalent in 
10–15% of the general population [2], is associated with 
significant depression morbidity and anxiety [3]. Sleep-
disordered breathing (SDB), prevalent among 10–17% 
(men) and 3–9% (women) of the general population [4], is 
identified as one of the leading causes of hypertension and 
cardiovascular morbidity [5], postoperative delirium [6], 
and well recognized as a major cause of work- and driv-
ing accidents [7]. Despite their high prevalence rates today 
and significant projections for the future [8], sleep-wake 
disorders remain largely under-diagnosed and inadequately 
treated [9, 10]. The current standard for the diagnosis of 
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sleep-wake disorders is overnight attended polysomnogra-
phy (PSG) [11].

Polysomnography the current state-of-the-art diagnostic 
tool provides sophisticated insights into sleep physiology 
and mechanisms of sleep-wake disorders. A drawback of the 
method, however, is an obtrusive patient setting dependent 
on a clinical-based sleep laboratory with high operational 
costs. Single-night polysomnography is often criticized for 
not being an accurate representative sample of a patient’s 
sleep due to its first-night effect and night-to-night variabil-
ity [12–14].

In conjunction with full scale single-night PSG studies, 
sleep diaries/logs [15] are often used to record subjective 
reports of sleep-wake behaviors and to evaluate the severity 
of chronic sleep-wake disorders such as insomnia, delayed 
sleep phase syndrome (DSPS), SDB, and fragmented sleep. 
Although subjective reports enable estimation of overall 
sleep-wake behaviors, studies have shown that these self-
reports have severe limitations leading to under/over-esti-
mation of total sleep time, sleep on-sets and wake [16, 17].

Recent developments in micro-technology have enabled 
non-invasive ambulatory activity monitory and sleep-wake 
behaviors. Actigraphy [18] uses sensitive, body worn, 
accelerometers to measure the movements of the patients 
during sleep and to derive objective sleep quality param-
eters. Although Actigraphy mitigates the problem of under/
over-estimation due to subjective perceptions of sleep, the 
physiological information that can be obtained from these 
recordings are very much limited due to its dependency 
on movements of the patient for sleep-wake classification. 
Hence, Actigraphy is often inappropriate for clinical diag-
nosis and long term monitoring [19].

Overnight variations in cardiorespiratory features during 
sleep have been extensively researched and show established 
characteristic variations in association with sleep stages [20, 
21]. Heart rate variability (HRV) calculated from Electro-
cardiogram (ECG) and respiratory effort from respiratory 
inductance plethysmography have been used to classify 
sleep stages [22], and even to screen sleep-wake disorders 
such as sleep apnea [23]. Although ECG and respiratory 
inductance plethysmography allow patients to monitor sleep 
from the comfort of their homes, these techniques are sig-
nificantly obtrusive since the patient will have to wear the 
apparatus for an average of 8 h each night.

Recent developments in wireless technology have ena-
bled contact-less acquisition of physiological signals. 
Doppler radar technology [24], based on the scattering of 
continuous wave radiation, was first introduced by Lin [25] 
measuring periodic chest wall motion due to respiration in 
animals as well as humans. Recent studies have demon-
strated contact-less measurement of respiration and heart 
rate [26, 27]. In these studies, the participants are seated in 
front of the Doppler radar with little or no movements. A 

single measurement period ranges between a few seconds 
to a few minutes. Such a setup differs from a real-life sleep-
ing subject under measurement as follows: (i) the subject 
exhibits a wider range of motions, positions, and orienta-
tions relative to a stationary Doppler radar apparatus, (ii) the 
cardio-pulmonary parameters being measured are subjected 
to a greater range of variations due to over-night circadian 
changes and longer measurement periods up to eight hours.

Studies validating Doppler radar with reference to the 
current gold-standard PSG are very much essential in order 
to fully evaluate the true potential of the technology in 
assessing overnight cardio-pulmonary variations, and to 
establish its implications in sleep-wake disorder diagnosis.

This work aims to:

1.	 present the hardware and signal processing methods of 
a miniaturized K-band Doppler radar prototype for limb 
movements, respiratory and cardiac monitoring.

2.	 evaluate the measurement of respiratory and cardiac 
parameters using a test bench for near physiological 
simulations.

3.	 validate the developed prototype for the assessment of 
limb movements, as well as respiratory and heart rate 
against the gold standard PSG in two overnight healthy 
volunteer studies.

2 � Materials and methods

2.1 � Principle of operation

During sleep, various internal organs subject the human 
body to movements ranging from a few micrometers to sev-
eral centimeters. The main sources of these movements are: 
(i) skeletal muscle contractions and relaxations, (ii) respira-
tion, (iii) heartbeats, and (iv) blood perfusion through cap-
illary network. Limb movements during sleep due to skel-
etal muscle contractions and relaxations routinely lie in the 
frequencies of 2.5–4 Hz. Respiration due to inhalation and 
exhalation involves small periodic motion (0.1–0.4 Hz) of 
the chest wall and abdomen in the range of 1–5 mm. Simi-
larly, volumetric changes of the heart during its beats result 
in pulsations of the chest wall causing surface level periodic 
(0.7–2 Hz) displacements in the range of 0.5–1 mm. Blood 
perfusion through the capillary network due to arterial pulsa-
tions induce displacements at the skin surface in the range 
of 0.01–0.06 mm, and often correlate highly with heart rate.

Doppler radar technology can be used to measure limb 
movements as well as periodic surface level displacements 
due to respiration, heartbeats, and blood perfusion. K-band 
Doppler radar transceiver was used to measure limb move-
ments, respiration, and heartbeats in this study. Although 
studies have demonstrated contact-less blood perfusion and 
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pressure measurement using Doppler radar [28], this was 
deemed in-essential for this study to achieve the overall goal 
of over-night cardiopulmonary monitoring for sleep-wake 
assessment.

An electromagnetic wave T(t) transmitted (Fig. 1) by the 
Doppler radar towards the subject’s chest wall can be math-
ematically represented as:

where t is time and f is the frequency of operation. A signifi-
cant component of T(t) gets reflected at the air-skin interface. 
This reflected wave R(t) can be represented as:

where d0 is the static distance between the Radar transceiver 
and the subject’s chest wall, d(t) is the periodic chest wall 
displacement in time t, and c is the speed of electromagnetic 
waves in air (3 × 108 m/s). The scalar A represents the ampli-
tude change and will be a fraction of the transmitted wave. 
Equation 2 shows that the static distance and the periodic 
chest wall motion (mainly caused by respiration and heart 
rate) are contained in the phase component of the received 
wave and can be recovered using appropriate demodulation 
and signal processing techniques.

2.2 � Hardware design

2.2.1 � Transceiver

We used a dual channel Doppler radar transceiver (K-LC5, 
RFBeam GmbH, Switzerland) in combination with a custom 
designed data acquisition system described in detail at the 
end of this section. The K-LC5 transceiver is a quadrature 
transceiver operating at 24 GHz with a built-in mixer stage 
to remove components that are common to the transmitted 

(1)T(t) = cos (2�ft)

(2)R(t) = A cos
(

2�ft + 2�f∕c(2d0 + 2d(t)
)

and received waves. The transceiver outputs only the phase 
components of the received wave, which hold the static 
distance, limb movements respiratory as well as heart rate 
information, as a pair of orthonormal signals that are com-
monly referred to as baseband signals or intermediate fre-
quencies. Quadrature transceivers compensate for the null 
point problem and are proven to be more reliable in com-
parison to single channel transceivers for small amplitude 
measurements [29]. The orthonormal baseband signal pair, 
I(t) and Q(t), after the in-built mixer stage can be mathemati-
cally represented as:

2.2.2 � Data acquisition

The baseband signals from the transceiver are amplified 
prior to digitization, using two low-noise, non-inverting 
amplifiers with a gain of 16. Two 12-bit synchronously 
sampling analog to digital converters digitize the ampli-
fied signals at a sampling rate of 500 Hz. A 32-bit ARM 
Cortex-M4 processor (MK20DX256VLH7, NXP Semicon-
ductors, USA) package the digitized samples further. The 
time-stamped packets were logged onto a SD-card for off-
line analysis.

2.3 � Signal processing

2.3.1 � Demodulation

Accurate estimation of d(t) involves efficient combining of 
I(t) and Q(t) to determine the phase of the reflected wave. 
Several schemes have been proposed for this purpose [26, 
27, 30], the method of Arc Tangent being the most com-
monly used. The arctangent demodulation is also called 
“nonlinear demodulation” or “direct phase demodulation” 
in the literature and can be mathematically represented as:

In order to efficiently apply the arc-tangent demodula-
tion scheme on the baseband signals, the static distance d0 
existing as a direct current (DC) component in the baseband 
signals must be estimated and eliminated as it acts as a linear 
transform on the I and Q components, resulting in erroneous 
phase estimates [27].

The center of the arc formed in the IQ-plot eliminates the 
DC component. The iterative Levenberg–Marquardt center 
estimation algorithm, with the initialization parameters pro-
vided by the algebraic Taubin fit method, was found to be the 
most accurate for this purpose [31]. Figure 2 shows the arc 
formed by the sample I and Q data points in the IQ-plot and 
the center estimation using Levenberg–Marquardt algorithm.

(3)I(t) = A1 cos
(

2�f∕c(2d0 + 2d(t)
)

(4)Q(t) = A2 cos
(

2�f∕c(2d0 + 2d(t) + �∕2
)

(5)�(t) = arctan (Q(t)∕I(t))

Fig. 1   Doppler radar based cardiopulmonary monitoring; principle 
of operation. Reflections of in-phase transmissions T(t), from the 
moving chest wall due to periodic respiratory and cardiac activity, 
give rise to phase shifted receptions R(t)
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2.3.2 � Multiresolution analysis

Upon demodulation, the recovered phase signal ϕ(t) is a 
combination of limb movements, periodic chest wall motion 
due to respiration and heartbeats, and reflections from other 
undesirable random movements occurring within the vicinity 
of measurement. In order to isolate individual physiological 
signal components from ϕ(t), an efficient signal separation and 
processing scheme is essential. Band-pass filters have been 
commonly used to isolate physiological signals [31] since the 
limb movements during sleep as well as the cardiopulmonary 
signals exist in well-defined frequency bands. Although such 
filters can be used for rudimentary separations, accurate recon-
struction of respiration and heart rate is challenging, as the 
process of filtering often results in signal distortion, amplitude 
modulation of the heart rate signal, and fails to solve the prob-
lem of higher order respiration harmonics falling within the 
frequency region of the heart rate [32].

Wavelet transform (WT) is a relatively new mathematical 
tool and since its introduction in 1909, WT has been success-
fully applied in a wide range of fields like data compression, 
numerical analysis, signal and image processing, and finance. 
The WT of a signal f can be mathematically represented as:

where s and a are the scale and translation factors of the 
mother wavelet �  function, the linear combination of 
whose dilations and translations represent the signal f(t) 

(6)Wsf (a) =
1
�

√

s

+∞

∫
−∞

f (t)�
�

t − a

s

�

dt

[33]. Mallat [34] proposed first the concept of multireso-
lution analysis (MRA) i.e. multi-level decomposition of a 
discretely sampled signal. In MRA, for a discrete signal f(t) 
sampled at a regular interval, the s and a factors are discre-
tized as: s = 2j, a = 2jk, and the wavelet function is expressed 
as:

 where Z is the integral set. MRA enables examination of 
the signal at dyadic frequency bands with varying resolu-
tions by decomposing the signal into approximate (CA) and 
detailed coefficients (CD). At a given decomposition level n, 
CAn contains frequencies from 0 to fs/2n and CDn contains 
frequencies between fs/2n to fs/2n + 1, where fs is the sampling 
rate of the signal f(t) being decomposed.

The demodulated signal �(t), with a sampling frequency 
of 50 Hz, was analyzed by using a 5-level MRA decompo-
sition as described above. Figure 3 illustrates in detail the 
5-level MRA scheme and the frequency bands of CAs and 
CDs at each level. Upon wavelet decomposition, CD4 was 
reconstructed to estimate limb movements. Similarly, CA5 
and CD5 were reconstructed to estimate respiration rates 
between 6 and 26 breaths per minute and heart rates between 
46 and 92 beats per minute.

2.4 � Test bench

A test bench setup was used to simulate the physiological 
motion of a human chest wall in order to characterize the 
response of the developed prototype. The setup comprised 
of a surface (plate), with a reflection coefficient and radar 
cross-section area close to that of a human thorax and a 
vibration exciter (Type 4809, Brüel & Kjaer, Denmark). 
This linear system converts electrical signals into mechani-
cal vibrations. An arbitrary waveform generator (33220A, 
Keysight Technologies, USA) was programmed to generate 
single-tone (one frequency) and multi-tone (a combination 
of two or more frequencies) vibrations, simulating the physi-
ological motion of a human chest wall with 8–24 breaths per 
minute and heart rates of 40–100 beats per minute. A power 
amplifier (Type BAA 120 TIRA, BEAK Electronic Engi-
neering GmbH, Germany) amplified the waveforms before 
they were fed to the vibration exciter. Figure 4 shows the 
surface, the vibration exciter, and the relative position of the 
prototype with reference to the test bench setup.

Equation 8 represents the general form of single-tone 
waveforms generated, where Avar is the variable amplitude 

(7)�j,k(t) = 2
−

j

2�

(

2−jt − k
)

, j, k ∈ Z

(8)Avar sin
(

2�fvar
)

(9)A1var sin
(

2�f1var
)

+ A2var sin
(

2�f2var
)

Fig. 2   Sample IQ-Plot with center estimation using Levenberg–Mar-
quardt (LM) algorithm. The DC components of channels I and Q are 
eliminated by estimating the center of the arc using LM fit
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and fvar is the frequency parameters of the wave. Similarly, 
Eq. 9 represents the general form of multi-tone waveforms 
generated, where A1var and f1var are the variable ampli-
tude and frequency parameters of the wave representing 

respiration (modelled as a sine wave), and A2var and f2var are 
the variable amplitude and frequency parameters of the wave 
representing chest wall movement due to periodic heartbeats 
(modelled as a sine wave as well).

Fig. 3   Multiresolution analysis. 
Signal decomposition using 
dyadic frequency bands and 
extraction of physiological 
signals of interest. Limb move-
ments are extracted from CD4, 
while respiration and heart-rate 
waveforms are extracted from 
CA5 and CD5, respectively

Fig. 4   Test bench setup: exciter with the vibrating surface mounted on top (a) and the prototype positioned (b)
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2.5 � Clinical validation

In January 2017 after obtaining informed consent two volun-
teers were assessed for limb movements, respiratory rate and 
heart rate in two overnight experiments simultaneously with 
the K-band Doppler radar prototype and the state-of-the-art 
reference method e.g. polysomnography at the Sleep-Wake-
Epilepsy-Centre, Department of Neurology, lnselspital, Bern 
University Hospital. The perpendicular distance between the 
Doppler radar transceiver and the sternum was 40 cm at 
an angle of 0° to the chest wall of the volunteer. The vol-
unteers were unrestrained during these overnight measure-
ments, hence their relative positions and angles with respect 
to the prototype was never constant. The prototype used for 
these experiments was equipped with a flash card (microSD 
32 GB, SanDisk, USA) for overnight data logging as well as 
for easy transfer to a personal computer for carrying out post 
hoc analysis The Embla Sleep Diagnostics system (Natus 
Medical Incorporated, USA) performed full polysomnog-
raphy under the supervision of trained sleep technicians. 
The sampling rates of the polysomnography system were in 
accordance with the recommendations set by the American 
Academy of Sleep Medicine (AASM) [11]. Respiration was 
recorded by using nasal pressure sensor and thoracic and 
abdominal strain gages. Body movements were recorded by 
an accelerometer based position sensors, mounted on the 
thorax of the subject. A sleep epoch of 30 s was defined 
according to the AASM criteria. The polysomnography raw 
data was exported, as individual signals, in the European 
Data Format (EDF) for post hoc analysis.

2.6 � Safety considerations

The Doppler radar transceiver of this study has maximum 
total output power of +19 dBm or 80 mW EIRP (Equivalent 
Isotropically Radiated Power), in-line with ubiquitous Wi-Fi 
router systems. When placed at a distance of 40 cm, the 
power density of the prototype is well below the recommen-
dations set by Federal Communications Commission (FCC) 
and The European Telecommunications Standards Institute 
(ETSI). Hence, the prototype poses no health implications 
for long-term continuous monitoring.

2.7 � Statistics

Data collection, data management, and signal processing 
were performed using MATLAB (R2016b, The MathWorks 
Inc., USA). MedCalc (version 17.5.5, MedCalc Software 
bvba, Belgium) was used for data analysis and plotting. For 
multi-tone test bench results, relative error percentages were 
calculated using the set and the measured variable values. 
A sensitivity–specificity analysis was used for limb move-
ment agreement of both methods. Sensitivity was defined 

as the ratio of true positives (detected double-epochs with 
limb movements) to the sum of true positives and false 
negatives (total number of double-epochs with limb move-
ments). Specificity was defined as the ration of true nega-
tives (double-epochs with no limb movements) to the sum 
of true negatives and false positives (total number of double-
epochs with no limb movements). Agreement of both meth-
ods for respiratory and heart rate was described by a detailed 
Bland–Altman [35, 36] analysis.

3 � Results

3.1 � Test bench

3.1.1 � Single‑tone measurements

Single-tone waveforms were used to characterize the 
response of the prototype, and its I and Q channels, with 
respect to varying distance, measured perpendicularly 
between the prototype and the surface of the vibration 
exciter. The vibration frequency fvar was set to 1 Hz, and the 
amplitude Avar was maintained at 0.5 mm, corresponding to 
physiological surface level displacements due to heart activ-
ity. The distance between the prototype and the setup was 
varied from 20 to 120 cm in incremental steps of 10. Table 1 
shows the signal-to-noise ratio (SNR) of the channels I and 
Q, calculated relative to the carrier (dBc), as a function of 
varying distance. Figure 5 illustrates the following three 
important scenarios of Table 1. (i) Both channels are oper-
ating in regions distant from their null points (D = 40 cm), 
(ii) channel I is close to its optimum point and Q to its null 
point (D = 50 cm), and (iii) channel Q is approaching its 
optimum point and I its null point (D = 70 cm).

Table 1   Signal to noise ratio (SNR) results as a function of varying 
distance for channel I and Q expressed in dBc (power ratio of a signal 
to a carrier signal)

Distance (cm) SNR—I (dBc) SNR—Q (dBc)

20 30.604 24.218
30 26.177 26.211
40 21.280 27.764
50 25.511 5.133
60 13.359 18.959
70 −5.499 9.917
80 15.018 10.442
90 12.628 16.899
100 20.195 16.690
110 21.172 9.825
120 22.835 2.993
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3.1.2 � Multi‑tone measurements

The performance of the above proposed signal processing 
scheme, involving demodulation and MRA, was analyzed 
using multi-tone waveforms simulating chest wall move-
ments. A1var, representing respiration amplitude, was set 
to 3 mm and A2var, representing heart rate amplitude, was 
maintained at 0.5 mm. Figure 6 illustrates the demodulated 
Doppler radar signal (Panel A) captured from a multi-tone 
waveform test bench setup with f1var and f2var set to 0.2334 
and 1 Hz, respectively, to simulate a respiratory rate of 14 
breaths per minute and a heart rate of 60 beats per minute. 
Figure 6 (Panels B and C) illustrates the isolation of respira-
tory and heart rate components from the demodulated signal 
using MRA. The mother wavelet employed for MRA was 
Symlet 10.

Table 2 shows the performance of the signal processing 
scheme in respiratory as well as heart rate reconstruction. 
During the first part of the measurements, heart rate and 
distance to test-bench were held constant at 55 beats per 
minute and 40 cm. The respiratory rate of the test-bench 

was varied from 6 to 24 breaths per minute in steps of 2. 
Similarly, during the second part of the measurements, res-
piratory rate was held constant at 14 breaths per minute at 
the same distance. The heart rate was varied from 45 to 95 
beats per minute in steps of 5. The respiratory and heart rates 
were calculated, as breaths and beats per minute, using the 
product of the dominant frequency of the approximate and 
detail coefficients of 5th level MRA decomposition with the 
constant 60.

3.2 � Volunteer study

3.2.1 � Limb movements

Upon performing MRA on the demodulated signal, limb 
movements are isolated as the detail coefficients of 4th 
level decomposition (CD4). Figure 7 illustrates a sample 
response of the polysomnography (Panel A) and that of the 
prototype (Panel B) to the limb movements of volunteer 2, 
measured over a period of 5 h. Double-epochs (60 s) were 
labeled (classified) to be containing limb movements if the 

Fig. 5   Channels I and Q close 
to their null and optimum 
points. At distance D = 40 cm 
(a), both channels I and Q 
are away from their null point 
regions. At distance D = 50 cm 
(b), channel I approaches its 
optimum point, while channel Q 
approaches its null point. At dis-
tance D = 70 cm (c), channel Q 
approaches its optimum point, 
while channel I approaches its 
null point
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root-mean-square (RMS) value of its CD4 exceeded a preset 
threshold. Upon synchronizing a total of 9-h data recordings 
from both the volunteers, 518 double-epochs were classified 
(movement = 1 and no-movement = 0) and the classification 
from the prototype was compared to that of the reference 
polysomnography to assess its sensitivity and specificity. 
The analysis has yielded the following results, shown in 
Table 3.

3.2.2 � Respiratory rate

Upon identification and isolation of epochs with limb move-
ments, using the above described classification scheme, the 
remaining epochs were processed to derive the respiratory 
and heart rates. 429 double-epochs (60 s) were used for 
respiratory rate statistical analysis, with the measurements 
ranging 14.6–22.0 breaths per minute. Double-epoch (60 s) 
analysis provided adequate resolution and resulted in mini-
mal estimation error, hence was preferred over single-epoch 
(30 s) analysis for respiratory rate estimations. A moving 
average of window length 5 was used to smooth the res-
piratory rate estimates. Figure 8 shows the Bland–Altman 

Fig. 6   a Sample multi-tone 
waveform with a respiratory 
rate of 14 breaths per minute 
and a heart rate of 60 beats per 
minute. b Extracted respiratory 
and c heart rate components

Table 2   Multi-tone simulation results for the scenarios of constant 
heart rate (HR) varying respiratory rate (RR) and constant RR and 
varying HR

BPM beats per minute, BrPM breaths per minute, SetRR simulated 
respiratory rate, SetHR simulated heart rate, MeaRR measured respira-
tory rate, MeaHR measured heart rate, and Er% relative percentage 
error

Const. HR (55 BPM) Const. RR (14 BrPM)

SetRR MeaRR Er% SetHR MeaHR Er%

6 6.00 0.00 45 45.00 0.00
8 7.85 −1.86 50 50.03 0.06
10 9.94 −0.63 55 55.01 0.02
12 12.12 0.98 60 59.99 −0.01
14 13.99 −0.06 65 65.02 0.03
16 16.08 0.49 70 70.00 0.00
18 18.02 0.13 75 75.03 0.04
20 20.06 0.31 80 80.01 0.02
22 22.05 0.25 85 84.99 −0.01
24 24.02 0.10 90 90.02 0.03

95 95.00 0.00
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analysis for RRPrt (prototype) and RRRef (polysomnogra-
phy). The overall absolute error in respiratory rate estimate 
is within the range of 1 breath per minute.

3.2.3 � Heart rate

Heart rate estimates pertaining to a single volunteer, from 
the reference polysomnography and the prototype, were used 
for carrying out statistical analysis. As heart rate has higher 
variability in comparison with the respiratory rate, epochs 
of 30-s length were used for deriving the heart rate esti-
mates. Consequently, 446 such epochs were used for heart 
rate Bland–Altman analysis, with the measurements ranging 

Fig. 7   Overnight activ-
ity response of the reference 
polysomnography (a) and that 
of the prototype mapped to the 
reference (b)

Table 3   Sensitivity–specificity analysis of limb movement classifica-
tion

Sensitivity (%) Specificity (%)

Volunteer 1 81.97 71.79
Volunteer 2 95.75 81.82

88.86 76.81

Fig. 8   Bland–Altman analysis for respiratory rate estimates from 
RRPrt (prototype) and RRRef (polysomnography). Solid black line 
mean bias; dotted red lines lower and upper limits of agreement; solid 
blue lines 95% confidence intervals for lower and upper limits of 
agreement; dotted green lines 95% confidence interval for mean bias
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54.9–65.1 beats per minute. Figure 9 shows the Bland–Alt-
man analysis for HRPrt (prototype) and HRRef (polysomnog-
raphy). The overall absolute error in heart rate estimate is 
within the range of 3 beats per minute.

4 � Discussion

This study successfully demonstrates the overall feasibility 
of K-band Doppler radar for contact-less overnight sleep 
marker measurements. We presented the development of a 
miniature setup for home-based long-term usage, using a 
24 GHz Doppler transceiver, as well as its signal process-
ing scheme, the Arc Tangent method for demodulation and 
the MRA for the reconstruction of physiological parame-
ters. Single- and multi-tone test bench simulations showed 
extremely low relative percentage errors of the prototype for 
respiratory and heart rate within −2 and 1%. The volunteer 
setup demonstrated high agreement between the prototype 
and the gold standard polysomnography for the overnight 
assessment of limb movements, respiratory and heart rate.

Arc Tangent demodulation has been the preferred demod-
ulation method in the literature and the same was employed 
in this study. Estimation of the static distance, existing as DC 
offsets in the I and Q channels, was a major challenge. Sole 
reliance on algebraic center estimation algorithms, such as 
the Taubin fit method, for DC offset tracking has resulted in 
erroneous estimates and demodulation. Similarly, iterative 
center estimation algorithms, such as Levenberg–Marquardt, 
failed to achieve accurate convergence when initialized with 
randomized initial conditions. The performance of center 
estimation and DC offset tracking has significantly improved 

when iterative algorithms were initialized with the results of 
algebraic fits as their initial conditions.

Doppler radar undergoing wavelet transforms and MRA 
offers a good framework for the assessment of these physi-
ological signals due to their well-defined frequency regions 
and non-stationary behavior. Although continuous wavelet 
transform offers a fine-grained frequency analysis, MRA 
using discrete wavelet transform was chosen due its dyadic 
down sampling. This enabled a signal decomposition scheme 
with its pre-defined levels spanning over the frequency 
ranges of the physiological signals of interest. Guided by the 
parameters of center frequency and the number of vanishing 
moments, we experimented with a range of wavelets found 
Symlet 10 as an optimal candidate.

The test bench setup simulating chest wall movements 
was very efficient and crucial to understand the response 
of the developed prototype. Single-tone simulations were 
pivotal in estimating radar channel imbalances and opti-
mal operational distance. Distances in the range 20–30 cm 
offered a good SNR for both channels and resolved the null 
point problem. Such distances, however, might be obtru-
sive to the subject/patient due to voluntary limb movements 
during sleep with probable physical contact. A distance of 
40 cm seems to be optimal with good SNR in both channels 
as well as with considerably lower probability of contact 
with the subject/patient during limb movements. With dis-
tances of 50 cm and above, the SNR of either or both the 
channels suffers due to increase in the background clutter. 
The results of multi-tone simulations using the test bench 
established the performance of the signal processing scheme 
involving demodulation and MRA. Precise reconstruction of 
respiratory and heart rate waveforms, from the demodulated 
signal, was feasible using MRA with relative errors below 
1% in most cases.

Overnight volunteer studies have achieved satisfactory 
results that are in line with our test bench simulations. Our 
system has achieved an overall sensitivity of 88.86% and 
specificity of 76.81% in limb movement classification. 
The slightly lower specificity score can be attributed to the 
specificity of volunteer 1, who was awake and moving for a 
period of 1 h before falling asleep. Furthermore, we believe 
that a full-scale adequately powered volunteer study will be 
essential to accurately assess the sensitivity and specific-
ity parameters of the prototype. The respiratory rate esti-
mates from our prototype agree well with that of the refer-
ence polysomnography. The overall absolute error was one 
breath cycle per minute, which is well within the clinically 
acceptable range. Although complete overnight polysom-
nography was carried out for both the volunteers, the heart 
rate measurements from only one volunteer were used for 
statistical analysis as the reference heart rate recordings from 
the second volunteers were of low quality, possibly due to 
electrode displacements during sleep. Like the respiratory 

Fig. 9   Bland–Altman analysis for heart rate estimates form HRPrt 
(prototype) and HRRef (polysomnography). Solid black line mean 
bias; dotted red lines lower and upper limits of agreement; solid blue 
lines 95% confidence intervals for lower and upper limits of agree-
ment; dotted green lines 95% confidence interval for mean bias
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rate estimates, heart rate estimates from our prototype agree 
well with that of the reference and lie within an overall abso-
lute error range of 3 beats per minute.

Epochs (represented as circles) falling outside the limits 
of standard deviations in the Bland–Altman plots (Figs. 8, 9) 
for respiratory and heart rate estimates were further investi-
gated. A majority of these outliers are the result of imprecise 
IQ center tracking, occurring immediately after the inci-
dence of limb movements, causing erroneous demodula-
tion, hence imprecise estimates. The peak detection scheme, 
used for the calculation of the respiratory rates, occasionally 
failed to mark in-complete peaks occurring at the extremes 
of an epoch, further resulting in outliers.

The results of our overnight volunteer studies are in-line 
with recently reported studies. Fox et al. [37] have com-
pared, SleepMinder, a Doppler radar based biomotion sensor 
with a medical grade Actigraph and reported a sensitivity 
of 79% and specificity of 75%. Shouldice et al. [38] have 
compared SleepMinder derived respiratory rates with those 
from reference polysomnography and reported an overall 
error of 1 breath per minute. Rahman et al. [39] employed a 
similar K-band system and reported a mean absolute error 
of 3.29 and 1.98 cycles per minute for respiratory and heart 
rate estimations, respectively. Although overnight studies 
were performed, neither full-scale polysomnography, nor 
medical grade devices were used as reference methods in 
the later study. In their recent work, Hosseini et al. [40] also 
employed a K-band based system and achieved higher lev-
els of accuracy (relative error less than 1.5%) for heart rate 
measurements by using an extensive model of the reflected 
signal.

This work has limitations. The multi-tonal simulations 
model respiratory movement of the chest wall as a single 
sine wave and do not include the effect of respiratory har-
monics. A similar shortcoming exists with the heart rate 
simulation as well. Implementing mathematical models 
of higher order may improve simulations of the chest wall 
movement under the influence of periodic respiration and 
heartbeats. We envisage carrying out overnight polysomno-
graphic studies involving more healthy volunteers to enable 
more accurate estimation of accuracy, precision, and repro-
ducibility of the prototype.

5 � Conclusion

K-band Doppler radar undergoing wavelet transforms and 
MRA is feasible and seems to be accurate for contact-less 
overnight sleep marker assessment. The validity of the sys-
tem has to be confirmed in adequately powered volunteer 
and clinical studies. Further technological refinements of 
K-band Doppler radar might deliver robust performance 
in non-clinical and home-based settings. The novelty and 

advantage of this technology lies in simultaneous contact-
less measurement of overnight limb movements, respiratory 
and heart rates using a single transceiver module. This is 
very much in contrast with the current home-based tech-
nologies that typically employ accelerometers/actigraphy for 
limb movements, respiratory inductance plethysmography 
(RIP) for respiratory rate measurement, and skin electrodes 
for heart rate measurement. As demonstrated in this pilot-
study, Doppler radar technology can offer the very same 
physiological information with increased comfort and ease 
of operation. We plan to combine this contact-less physi-
ological data acquisition system with a sleep classification 
framework to achieve home-based sleep monitoring, diag-
nosis and assessment.
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