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A scoping review of large language model
based approaches for information
extraction from radiology reports

Check for updates
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Radiological imaging is a globally prevalent diagnosticmethod, yet the free text contained in radiology
reports is not frequently used for secondary purposes. Natural Language Processing can provide
structured data retrieved from these reports. This paper provides a summary of the current state of
research on Large Language Model (LLM) based approaches for information extraction (IE) from
radiology reports. We conduct a scoping review that follows the PRISMA-ScR guideline. Queries of
five databases were conducted on August 1st 2023. Among the 34 studies that met inclusion criteria,
only pre-transformer and encoder-based models are described. External validation shows a general
performance decrease, although LLMs might improve generalizability of IE approaches. Reports
related to CT and MRI examinations, as well as thoracic reports, prevail. Most common challenges
reported aremissing validationon external data andaugmentation of thedescribedmethods. Different
reporting granularities affect the comparability and transparency of approaches.

In contemporary medicine, diagnostic tests, particularly various forms of
radiological imaging, are vital for informed decision-making1. Radiologists
create for image examinations semi-structured free-text radiology reports
by dictation, sticking to a personal or institutional schema to organize the
information contained. Structured reporting that is only used in few insti-
tutions and for specific cases on the other hand offers a possibility to
enhance automatic analysis of reports by defining standardized report
layouts and contents.

Despite the potential benefits of structured reporting in radiology, its
implementation often encounters resistance due to the possible temporary
increase in radiologists’ workload, rendering the integration into clinical
practice challenging2. Natural language processing (NLP) can provide the
means to make structured information available by maintaining existing
documentation procedures. NLP is defined as “tract of artificial intelligence
and linguistics, devoted tomaking computers understand the statements or
words written in human languages”3. Applied on radiology reports, meth-
ods related to NLP can extract clinically relevant information. Specifically,
information extraction (IE) provides techniques to use this clinical infor-
mation for secondary purposes, such as prediction, quality assurance or
research.

IE, a subfield within NLP, involves extracting pertinent information
from free-text. Subtasks include named entity recognition (NER), relation
extraction (RE), and template filling. These subtasks are realized using

heuristic-based methods, machine learning-based techniques (e.g., support
vector machines or Naıve Bayes), and deep learning-based methods4.
Within the field of deep learning, a new architecture of models has recently
emerged - namely large language models (LLMs).

LLMs are “deep learning models with a huge number of parameters
trained in an unsupervised way on large volumes of text”5. These models
typically exceed one million parameters and have proven highly effective
in information extraction tasks. The transformer architecture, introduced
in 2017, serves as the foundation for most contemporary LLMs, com-
prising two distinct architectural blocks; the encoder and the decoder.
Both blocks apply an innovative approach of creating contextualizedword
embeddings called attention6. Prior to the “age of transformers” still
present today, recurrent neural network (RNN)-based LLMs were
regarded as state-of-the-art for creating contextualized word embeddings.
ELMo, a language model based on a bidirectional Long Short Term
Memory (BiLSTM) network7, is an example thereof. Noteworthy
transformer-based LLMs include encoder-based models like BERT
(2018)8, decoder-basedmodels like GPT-3 (2020)9 andGPT-4 (2023)10, as
well as models applying both encoder and decocoder blocks, e.g.,
Megatron-ML (2019)11. Models continue to evolve, being trained on
expanding datasets and consistently surpassing the performance bench-
marks established byprevious state-of-the-artmodels. The question arises
how these new models shape IE applied to radiology reports.
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Regarding existing literature concerning IE from radiology reports,
several reviews are available, although these sources either miss current
developments or only focus on a specific aspect or clinical domain, see
Table 1. The application of NLP to radiology reports for IE has already been
subject to twosystematic reviews in201612 and202113.While the former isnot
freely available, the latter searches onlyGoogle Scholar and includes only one
study based on LLMs. Davidson et al. focused on comparing the quality of
studies applying NLP-related methods to radiology reports14. More recent
reviews include a specific scoping review on the application ofNLP to reports
specifically related to breast cancer15, the extraction of cancer concepts from
clinical notes16, and a systematic review on BERT-based NLP applications in
radiology without a specific focus on information extraction17.

AsLLMshaveonly recently gained a strongmomentum, a researchgap
exists as there is no overview of LLM-based approaches for IE from radi-
ology reports available. With this scoping review, we therefore intend to
answer the following research question:

What is the state of research regarding information extraction from free-
text radiology reports based on LLMs?

Specifically, we are interested in the subquestions that arise from the
posed research question:
• RQ.01 - Performance: What is the performance of LLMs for infor-

mation extraction from radiology reports?
• RQ.02 -Training andModeling:Whichmodels are usedandhow is the

pre-training and fine-tuning process designed?
• RQ.03 - Use cases: Which modalities and anatomical regions do the

analyzed reports correspond to?
• RQ.04 - Data and annotation: How much data was used to train the

model, how was the annotation process designed and is the data
publicly available?

• RQ.05 - Challenges: What are open challenges and common limita-
tions of existing approaches?

The objective of this scoping review is to answer the above-mentioned
questions, provide an overview of recent developments, identify key trends
and highlight future research by identifying outstanding challenges and
limitations of current approaches.

Results
Study selection
As shown in Fig. 1, the systematic search yielded 1,237 records, retrieved
fromfivedatabases.After removingduplicate records and recordspublished
before 2018, 374 records (title, abstract) were screened for eligibility. The
screening process resulted in the exclusion of 302 records. The remaining 72
records were sought for full-text-retrieval, of which 68 could be retrieved.
During data extraction, 43 papers were excluded due to not fulfilling
inclusion criteria, whichwasnot apparent basedon informationprovided in
the abstract.

Within the cited references of included papers, nine additional papers
fulfilling all inclusion criteria were identified. Therefore, following the
above-mentioned methodology, 34 records in total were included in this
review.

Study characteristics
In the following, we organize the extracted information according to the
structure of the extraction table, which in turn reflects the defined
research questions. This review covers studies that were published
between 01/01/2018 and 01/08/2023. The earliest study included was
published in 2019. After eight included studies published in 2020, the
topic reaches its peak with eleven studies published in 2021. Eight
studies of 2022 were included. Six included studies were published in
the first half of 2023.

Based on corresponding author address, 15 out of 35 papers are located
in theUSA, followedby six inChina and three each in theUKandGermany.
Other countries includeAustria (n = 1),Canada (n = 2), Japan (n = 2), Spain
(n = 1) and The Netherlands (n = 1) (Table 2).

Extracted information
This chapter describes the NLP task, the extracted entities, the information
model development process and data normalization strategies of the
included studies.

Extracted concepts encompass various entities, attributes, and relations.
These concepts relate to abnormalities18–20, anatomical information21, breast-
cancer related concepts22, clinical findings23–25, devices26, diagnoses27,28,
observations29, pathological concepts30, protected health information (PHI)31,
recommendations32, scores (TI-RADS33, tumor response categories34), spatial
expressions35–37, staging-related information38,39, and stroke phenotypes40.
Several papers extract various concepts, e.g., ref. 41.

Studies solely describing document-level single-label classifica-
tion were excluded from this review. Two studies apply document-level
multi-class classification. Document-level multi-label classification is
described in nine studies (26%), whereof three only classify more than
two classes for each entity. Themajority of the included studies (n = 21,
62%) describes NER methods, ten studies additionally apply RE
methods. These studies encompass sequence-labeling and span-
labeling approaches. Question answering (QA)-based methods are
described in two studies, see Fig. 2.

The number of extracted concepts (including entities, attributes, and
relations) ranges from one entity in both papers describing multi-class
classification33,34 up to 64 entities described in a NER-based study30.

Three studies base their information model on clinical guidelines,
namely the Response evaluation criteria in solid tumors42 and the TNM
Classification of Malignant Tumors (TNM) staging system43. Development
by domain experts (n = 2), references to previous studies (n = 3), regulations
of the Health Insurance Portability and Accountability Act44 (n = 1), the
Stanza radiology model45 (n = 1) and references to previously developed
schemes (n = 2) are other foundations for informationmodel development.
One study provides detailed information about the development process of
the information model as supplementary information19. One study reports
development of their information model based on the RadLex
terminology46, another based on the National Cancer Institute Thesaurus47.
21 studies (62%) do not report any details regarding the development of the
information model.

Out of the 34 included studies, only three describemethods to structure
and/or normalize extracted information. While Torres-Lopez et al. apply
rule-basedmethods to structure extracteddata basedonentity positions and
combinations30, Sugimoto et al. additionally apply rule-based normalization
based on a concept table24. Datta et al. describe a hybrid approach to nor-
malize extracted entities byfirst generating concept candidateswithBM25, a
ranking algorithm, and then choosing the best equivalent with a BERT-
based classifier48.

Regarding the distribution of annotated entities within the data-
sets, only one study reports on having conducted measures to coun-
teract class imbalance19. Another study reports on not having used
F1 score as a performance measure, as the F1 score is not suited when
class imbalances are present27. Four studies (12%) report coarse entity
distributions and seven studies (21%) describe granular entity
distributions.

Table 1 | Overview of existing literature

Authors Year Scope

Pons et al.12 2016 SR: NLP in radiology

Casey et al.13 2021 SR: NLP applied to radiology reports

Davidson et al.14 2021 SR: Quality of NLP studies applied to radiology
reports

Saha et al.15 2023 ScR: NLP applied to breast cancer reports

Gholipour et al.16 2023 SR: NLP-based extraction of cancer concepts from
clinical notes

Gorenstein et al.17 2024 SR: BERT-based NLP in radiology

SR systematic review, ScR scoping review.
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Model
In the following, details regarding the reported model architectures and
implementations are described, including base models, (further) pre-
training and fine-tuning methods, hyperparameters, performance mea-
sures, external validation and hardware details.

For an overview of applied model architectures, see Table 3. 28 out of
34 papers (82%) describe at least one transformer-based architecture, while
the remaining six studies apply various adaptions of the Bidirectional Long
Short-Term Memory (Bi-LSTM) architecture. Out of the 28 studies that
describe transformer-based architectures, 27 are based on the BERT
architecture8 and one is based on the ERNIE architecture49. Eight studies
(24%) describe further pre-training of a BERT-based, pre-trainedmodel on
in-house data. Eighteen studies (53%) use a BERT-based, pre-trainedmodel
without further pre-training. One study applies pre-training to other layers
than the LLM. Two studies do not provide any details regarding the
architecture of the BERT models. One study combines both BERT- and
BiLSTM-based architectures28. Out of six studies that describe only
BiLSTM-based architectures, two studies apply pre-training ofword vectors
based on word2vec50. 31 studies (91%) provide sufficient details about the
fine-tuning process. Three studies do not provide details24,39,51.

Reported performance measures vary between included studies,
including traditional measures like precision, recall, and accuracy as well as
different variations of the F1 score (micro, macro, averaged, weighted,
pooled). The performance of studies reporting a F1-score variation
(including micro-, macro-, pooled- generalized, exact match and weighted
F1) is compared in Table 4. If a study describesmultiplemodels, the score of
the bestmodelwas chosen. If two ormore datasets are compared, the higher

Fig. 1 | PRISMAflowchart describing the source of
evidence retrieval and selection process. Querying
of five databases resulted in a total of 1237 sources of
evidence eligible for screening. This number was
reduced to 374 after deduplication and removal
based on publication year. Eventually, 34 studies
were included in this review after completion of the
screening process.

Table 2 | Countries of publication

Country of
publication

Frequency References

USA 15 21,23,26,29,30,32,33,35–37,40,48,57,59,60

China 6 20,28,38,39,51,54

UK 3 18,19,27

Germany 3 34,41,63

Canada 2 22,25

Japan 2 24,46

Austria 1 53

Spain 1 31

The Netherlands 1 107
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score was chosen. If applicable, the result of external validation is also
presented. 22 studies (65%) report having conducted statistical tests,
including cross-validation, McNemar test, Mann-Whitney U test and
Tukey-Kramer test.

Hyperparameters used to train the models (e.g., learning rate, batch
size, embedding dimensions) are described in 28 studies (82%), however
with varying degree of detail. Six studies (18%) do not report any details on
hyperparameters. Seven studies (21%) describe a validation of their algo-
rithm on training data from an external institution. Seven studies (21%)
include details about hardware and computational resources spent during
the training process.

Data sets
In this section, we describe the study characteristics related to data sets,
encompassing number of reports, data splits, modalities, anatomic regions,
origin, language, and ethics approval.

Data set size used for fine-tuning ranges from50 to 10,155 reports. The
amountof external validationdata ranges from10%to31%of the amountof
data used for fine-tuning. For further pre-training of transformer-based
architectures, 50,000 up to 3.8 million reports are used. Jantscher et al.
additionally use the content of a public clinical knowledge platform (Doc-
Check Flexicon52)53. Zhang et al. only report the amount of data (3 GB)54.
Jaiswal et al. performed further pre-training on the complete MIMIC-CXR
corpus29. Two studies that described pre-training of word embeddings for
Bi-LSTM-based architectures used 3.3 million and 317,130 reports,
respectively24,32.

Data splits vary widely; the majority of studies (n = 23, 68%) divide
their data into three sets, namely train-, validation- and test-set, with the
most common split being 80/10/10, respectively. This split variation is
reported in eight studies (24%). Seven studies (21%) use two sets only, four
studies (12%) apply cross-validation-based methods.

19 studies (56%) describe the timeframewithinwhich reportshad been
extracted. Dada et al. report the longest timeframe of 22 years, using reports
between 1999 and 2021 for further pre-training41. The shortest timeframe
reported is less than one year (2020–2021)26.

Several studies are based on publicly available datasets: MIMIC-CXR55

was used once29 while MIMIC56 was used by two studies40,57. MIMIC-III58

was used by six studies (18%)37,40,48,57,59,60. The Indiana chest X-ray
collection61 was used twice35,36. For external validation, MIMIC-II was
applied by Mithun et al.62 and MIMIC-CXR by Lau et al.23. While some of
these studies use the datasets as-is, some perform additional annotation.
Other studies use data from hospitals, hospital networks, other tertiary care

Fig. 2 | Distribution of reported NLP tasks. The circles contain the absolute
number of studies per task. NER Named entity recognition, RE Relation extraction,
ML-CL Binary multi-label classification, MC-CL Multi-class classification, QA
Question answering.

Table 3 | Overview of reported BERT-based model
architectures

Architecture Frequency References

BERTBase8 5 22,23,26,33,59

MIMIC BERTBase107 4 37,40,48,60

MIMIC BERTLarge107 3 48,57,60

RoBERTa108 2 26,41

BioBERT109 2 18,19

Clinical BERT110 2 22,23

German BERT111 2 34,63

BERTLarge8 1 35

PubMedBERT112 1 26

DistilBERT113 1 26

DeBERTa104 1 26

BERT WWM114 1 38

BlueBERT115 1 29

G-BERT116 1 41

GM-BERT117 1 41

MULTI-BERTs118 1 63

R-BERT119 1 53

SciBERT120 1 27

SpERT121 1 21

XLNet Large122 1 35

Table 4 | Performance overview of studies reporting averaged
F1-scores

Performance
(%, F1 score)

Performance
external (%)

Extracted
conceptsa(n)

Reference

68.76 9 57

70.00 1 34

74.00 39.00 3 62

75.93 9 48

80.10 (macro-F1,
exact matching)

18 39

80.40 (weighted
average)

13 29

81.10 5 37

82.66 4 40

83.97 27 41

85.60 5 35

85.96 (macro-F1) 14 38

86.00 (micro-
average, pooled)

5 27

90.49 5 36

93.53 75 54

93.80 5 24

95.00 5 25

95.36 (micro-
average)

94.62 7 46

96.00 92.84 64 30

97.72 92.63 7 31

98.00 (weighted
average)

85.00 1 33

aIncluding entities, relations, and attributes.
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institutions, medical big data companies, research centers, care centers or
university research repositories.

Figures 3 and 4 show the frequencies of modalities and anatomical
regions, respectively. Note that frequencies were counted on study-level and
not weighted by the number of reports.

Report language was inferred from the location of the institution
of the corresponding author: Most studies use English reports (n = 21,
62%) followed by Chinese (n = 6, 18%), German (n = 4, 12%), Japanese
(n = 2, 6%) and Spanish (n = 1). The corresponding author address of
one study is located in the Netherlands but using data from an Indian
Hospital62.

19 studies (56%) explicitly state that the endeavor was approved by
either a national committee or agency (n = 3, 9%) or a local institutional or
hospital review board or committee (n = 15, 44%). One study reports
approval only for in-house data, but not for the external validation set from
another institution33.

Annotation process
28 studies (82%) describe an exclusively manual annotation process. Five
studies (15%) explicitly state that each report was annotated by two persons
independently. Lau et al. use annotateddata to train a classifier that supports
the annotation process by proposing only documents that contain potential
annotations32. Two studies use tools for automated annotation withmanual
correction and review29,31. Lybarger et al. do not provide details on their
augmentation of an existing dataset21, three others do not report details as
they either extract information available in the hospital information
system33 or exclusively use existing annotated datasets36,59.

Annotation tagging schemes mentioned include IOB(2), BISO and
BIOES (short for beginning, inside, outside, start, end). The number of
involved annotators ranges from one to five, roles include clinical coordi-
nators, radiologists, radiology residents, medical and graduate students,
medical informatics engineers, neurologists, neuro-radiologists, surgeons,
radiological technologists and internists. Existing annotation guidelines are
reported by three studies, four studiesmention that instructions exist but do
not provide details. 23 studies (68%) do notmention information regarding
annotation guidelines.

Inter-annotator-agreement (IAA) is reported by 23 (68%) studies.
Measures include F1 score variants (n = 8, 24%), Cohen kappa (n = 7, 21%),
Fleiss kappa (n = 19, 56%) and the intraclass correlation coefficient (n = 1).
IAA results are reported by 16 studies (47%) and range, for Cohen kappa,
from 81% to 93.7%. Eleven studies (32%) mention the tool used for anno-
tation, including Brat23,37,39,48,53,60, Doccano34, TagEditor30, Talen46 and two
self-developed tools19,63.

Data and source code availability
Five studies (15%) state that data is available upon request.One study claims
availability, although there is no data present in the referenced online
repository57. One study published its dataset in a GitHub repository35. One
study only uses annotations provided within a dataset with credentialed
access59. The remaining 22 studies (65%) do not mention whether data is
available or not. Regarding source code availability, ten studies (29%) claim
their code to be available. The remaining 24 studies (71%) do not mention
whether the source code is available or not.

Challenges and limitations
Various aspects related to limitations and challenges are described. The
most common mentioned limitation is that studies use only data from a
single institution21,22,24,30,36,51,53. Similarly,multiple studiesmention validation
on external or multi-institutional data as a future research direction19,26,59.
Two studies mention the need of semantic enrichment or normalization of
extracted information48,54.

Many studies report intentions to augment their described approaches
to other report types21,28,30,37, other report sections22, to include other ormore
data sources35,39,54 or entities32,62, body parts46, clinical contexts34 or
modalities35,53,59.

Additional limitations include the application to only a singlemodality
or clinical area21,46,53, small dataset size27,32,54, technical limitations27,63, no
negation detection35,62, few extracted entities24,28 or result degradation upon
evaluation on external data19 or more recent reports25. Missing interpret-
ability is mentioned by two studies28,41.

Discussion
Performance measures reported in Table 4 cannot be compared due to
differences in datasets, number of extracted concepts and the heterogeneity
of applied performance measures. External validation performed by six
studies shows in general lower performance of the algorithm applied to
external data, so data from a source different from the one used for training.
The largest performance dropof 35% (overall F1 score)was reported in aBi-
LSTM-based study, performing multi-label binary classification of only
three entities on the document-level62. On the contrary, Torres-Lopez et al.
extracted a total of 64 entities with a performance drop of only 3.16%
(F1 score), although not providing details on their model architecture. The

Fig. 3 | Distribution of modalities. The diagram shows absolute numbers of
mentioned modalities. Several studies use reports obtained from multiple mod-
alities. Other modalities include positron emission tomography-computed tomo-
graphy (PET-CT) (n = 1) and ultrasound (n = 2). Three studies did not explicitly
mention associated modalities. Abbreviations: CT Computer tomography, MRI
Magnetic resonance imaging.

Fig. 4 | Distribution of anatomical regions. The diagram shows absolute numbers
of mentioned anatomical regions. Several studies use reports corresponding to
multiple anatomical regions. Other anatomical regions include the heart, abdomen,
pelvis, “all body regions'', nose, thyroid (n = 1 each) and breast (n = 2). Four studies
did not explicitly mention associated anatomical regions.
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smallest performance drop amounts to only 0.74% (MicroF1) for extracting
seven entities based on a further pre-trainedmodel46. However, it cannot be
assumed that further pre-training increases model generalizability and
therefore performance.

Upon analysis of performance, several inconsistencies between inclu-
ded studies impairs comparability: First, there is no standardizedmeasure or
best-practice to assess model performance for information extraction.
Although in general, the F1 score is most often applied and well known,
there exist many variations, including micro-, macro-, exact and inexact
match scores, weighted F1 score and 1-Margin F1 scores. On the contrary,
Zaman et al. argue thatmacro-averaged F1 score or overall accuracy are not
suited as performancemeasureswhen class imbalances are present27. For the
same reason, F1 score is only used to assess binary classification and not for
multi-class classification by Wood et al.19.

While 22 studies apply some variation of cross-validation to assess
model performance, 12 studies apply simple split validationmethods. Singh
et al. show that if data sets are small, simple split validation shows significant
differences of performance measures compared to cross-validation64.

Specific statistical tests to compare performance of different models
include DeLong’s test to compare Area under the ROC Curves19,27, the
Tukey-Kramer method for multiple comparison analysis46 and the McNe-
mar test to compare the agreement between two models22. However,
appropriateness of each test method remains unclear, as shown by Demner
et al.65.

In general, equations on how performance metrics are computed
should always be included in the manuscript to improve understandability,
e.g., as done by22 or30. To improve comparability of studies, scores for each
class as well as a reasonable aggregated score over all classes should be
reported.

This review identified only decoder-based architectures or pre-
transformer architectures and no generative models, such as GPT-4
(released inMarch 2023). Themajority of the describedmodels is based
on the encoder-only BERT architecture, first described by Devlin et al.8.
We envision multiple reasons: First, while having been available since
201866, generative models first needed time to be established as a new
technology to be investigated and applied in the healthcare sector.
Second, early generative models might have demonstrated poor per-
formance due to their relatively small size and lack of domain-specific
data for pre-training67. Third, poor performance might also entail
model hallucinations: Farquhar et al. define hallucination as “answer-
ing unreliably or without necessary information”68. Hallucinations
include, among others, provision of wrong answers due to erroneous
training data, lying in pursuit of a reward or errors related to reasoning
and generalization68. On the contrary, encoder-only models like the
BERT architecture cannot hallucinate as they provide only context-
aware embeddings of input data; the actual NLP task (e.g., sequence
labeling, classification or regression) is performed by a relatively sim-
ple, downstream neural network, rendering this architecture more
transparent and verifiable than generative models.

An advantage of LLMs is their capability to be customized to a specific
language or general domain (e.g., medicine): First, a base version of the
model is trained using a large amount of unlabeled data: This process is
called pre-training. The concept of transfer-learning enables researchers to
further customize a pre-trained model to a more specific domain (e.g.,
clinical domain, another language or from a certain hospital). This is also
referred to as further pre-training. The process of training the model to
perform a particular NLP task (e.g., classification) based on labeled data is
called fine-tuning. These definitions (pre-training, further pre-training,
transfer learning and fine-tuning) tend to be confused by authors or
replaced by other term variants, e.g., “supervised learning”. However, it is
imperative to use clear and concise language to distinguish between the
concepts mentioned above.

Seven included studies apply further pre-training as defined above. The
effect of further pre-training depends on various factors, including specifi-
cations of the input model used or amount and quality of the data used for

further pre-training. Interestingly, further pre-training of a pre-trained
model to another language was not reported.

Opposed to the traditional further pre-training as described above,
Jaiswal et al. show how BERT-based models achieve higher performance
when little data is available based on contrastive pre-training29. The authors
claim that their model achieves better results than conventional transfor-
mers when the number of annotated reports is limited.

Only two studies solve the task of information extraction based on
extractive question answering41,59. Extractive question answering was
already described in the original BERT paper8: Instead of generating a
pooled embedding of the input text or one embedding per input token, a
BERTmodel fine-tuned for question answering takes an answer as an input
and outputs the start and end tokenof the text span that contains the answer
to the posed question - this is also possible if no answer or multiple answers
are contained within the text as shown by Zhang et al.69.

The most commonmodalities for which reports of findings were used
in the included studies are CT (n = 16), MRI (n = 15) and X-Ray (n = 14).
CT reports appear tobe themost commonsourcewhenusing in-housedata.
According to data provided by theOrganisation for Economic Cooperation
and Development (OECD), the availability of CT scanners and MRI
machines has increased steadily during the past decades. Furthermore, there
has been a general upwards trend in the number of performed CT andMRI
interventions worldwide70. CT exams are fast and cheap compared to MRI.

Themost common anatomical regions studied are thorax (n = 17) and
brain (n = 8). There might be different reasons for this distribution. First,
chest X-Ray is one of themost frequently performed imaging examinations.
Second, six studies used reports obtained from MIMIC datasets, including
thorax X-Ray, brain MRI and babygram examinations. Two studies used
thorax X-Ray reports obtained from publicly available datasets. Further-
more, a report on the annual exposure frommedical imaging in Switzerland
shows that the thorax region is the thirdmost commonanatomical regionof
CT procedures (11.8%), preceded by abdomen and thorax (16.4%) and
abdomen only (17.7%)71.

We identified several aspects that showed different interpretations in
the included studies. One of the major ambiguities discovered is the clear
definition of the terms test set and validation set: Some studies use these two
very distinct terms interchangeably. However, agreement is needed upon
which set is used during parameter optimization of amodel andwhich set is
used for evaluation of the final model. Furthermore, studies either report
number of sentences or number of documents, hindering comparability. It
also remains unclear, whether the stated dataset size includes documents
without annotation or annotated data only. Report language is never
explicitly stated.

Regarding annotation, it becomes apparent that there is no standard
for IAA calculation, recommended number of annotator and their back-
grounds, number of reports, number of reconciliation rounds and espe-
cially, IAA calculation methods. All these aspects differ widely in the
included papers.

Good practices observed in the included papers include reporting of
descriptive annotation statistics35 and conducting complexity analysis of the
report corpus29,34: These complexity metrics include e.g., unique n-gram
counts, lexical diversity as measured with the Yule 1 score and the Type-
Token-Ratio, as reported in ref. 46.Wood et al. highlight the importance of
splitting data on patient-level instead of report level19.

Last, we want to highlight interesting approaches: Fine et al. first use
structured reports for fine-tuning and then apply the resulting model on
unstructured reports34. Jaiswal et al. introduce three novel data augmenta-
tion techniques before fine-tuning their model based on contrastive
learning29. Pérez-Díez et al. developed a randomization algorithm to sub-
stitute detected entities with synthetic alternatives to disguise undetected
personal information31.

The mentioned challenges and limitations are manifold and diverse.
Ten papers in total address the topic of generalizing to data from other
institutions. Another challenge are the limitations of every study, be it a
limitednumber of entities andusually a singlemodality and clinical domain.
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Every included study is based on a pre-defined informationmodel and fine-
tuned on annotated data. This means, that by August 2023, no truly gen-
eralized approach for IE has been described in the identified literature.

Upon interpretation of the above-mentioned results, several limita-
tions of this review can be mentioned. First, the definition of information
extraction proved to be challenging.We defined information extraction as a
collective term for theNLP tasks of document-levelmulti-label classification
(including binary ormultiple classes for each label), NER (including RE), as
well as question answering approaches. We excluded binary classification
on the document level. While a narrow definition of IE would possibly only
include NER and RE, whereas the widest definition would also include
binary document classification. With our approach, we wanted to ensure a
balanced level of task complexity.

Furthermore, the definition of an LLM was also unclear. In the
protocol for this review, LLMs are defined as “deep learning models
with more than one million parameters, trained on unlabeled text
data”72. Although BiLSTM-based architectures are not trained on text,
the applied context-aware word embeddings like fastText and word2-
vec stipulate the inclusion of these architectures into this review. An
additional argument for including BiLSTM-based architectures is
ELMO, a BiLSTM-based architecture with ~ 13M parameters, and
referred to as one of the first LLMs. However, we decided not to include
BiGRU-based architectures, as information on their parameter count
was usually not available. Amore narrow definition would only include
transformer-based architectures, having billions of parameters. This
definition seems to have recently reached consensus among researchers
and in industry. As of the time of submission in June 2024, LLMs tend to
be defined even more narrow, only including generative models based
on autoregressive sampling73. This might be due to generative models
currently being themost common and frequentmodel architecture. On
the contrary, a wider definition would also potentially include BiGRU-
based, CNN-based and other architectures. It also remains subject to
discussion whether summarization can be regarded as information
extraction—for this study, summarization was not included, poten-
tially missing studies of interest, e.g., ref. 74. Likewise, image-to-text
report generation was excluded.

Regarding the search strategy, we decided not to include numerous
model names to keep the complexity of the search term low. Instead, we
initially only included the terms transformers andBert. Eventually, only two
search dimensions were used because otherwise, the number of search
results would have been too small. To minimize the number of missed
studies, the forward search of references of included studies was carried out,
eventually leading to nine additionally included studies that were not cov-
ered by the search strategy. Nevertheless, our search strategy was not
exhaustive: Studies that used terms related to transformation or structuring
of reports, e.g.,refs. 75,76, weremissed as these terms aremissing in the search
strategy.

No generative models and therefore no approaches based on
generative models (including few-, single- or zero-shot learning) are
included in the search results. This might be due to the fact that gen-
erative models have only started to become widely accessible with the
publication of chatGPT in November 2022. Only later, open-source
alternatives became available. However, due to the sensitive nature of
patient data, utilization of publicly serviced models, e.g., GPT-4, is
restricted due to data protection rules. Until the cut-off time of this
review, state-of-the-art, open-source generative models, e.g., LLama 2
(70B), had still required vast computational resources, restricting the
possibilities of on-premise deployment within hospital infrastructures.
Furthermore, early studies might so far only be published without peer-
review (e.g., on arXiv), excluding them for this review, e.g., ref. 77. As no
search updates were performed for this review, arXiv papers that were
later peer-reviewed were also not included, e.g.,78. Relevant papers
published in the ACL Anthology were also not included, potentially
missing papers describing generative approaches, e.g., by Agrawal
et al.79 and Kartchner et al.80. Sources that did notmention “information

extraction”, “named entity recognition” or “relation extraction” in the
title or abstract and were not referred to by other papers were also not
included, e.g., ref. 81.

Given the diverse nature of the included studies alongside dis-
crepancies in both the quality and quantity of reported data, a compre-
hensive analysis of the extracted information was deemed impossible.
Future systematic reviews could enhance this comparison by refining the
research question and subquestions to a more specific scope. However,
according to the protocol for this scoping review, a purely descriptive pre-
sentation of findings was conducted.

Another potential limitation is the fact that data extraction was per-
formed by one author (DR) only. However, prior to data extraction, two
studies were extracted by two authors, and the resulting information
compared. This led to the addition of six additional aspects to the original
data extraction table, including details on hardware specification, hyper-
parameters, ethical approval, timeframe of dataset and class imbalance
measures.

Last,wewant tohighlight that this scoping reviewstrictly adheres to the
PRISMA-ScR and PRISMA-S guidelines. Our search strategy of five data-
bases resulted in over 1200 primary search results, minimizing the risk of
missing relevant studies. This risk was further minimized by carefully
choosing a balanced definition of both IE and LLMs. As only peer-reviewed
studies were taken into account, a certain study quality was furthermore
ensured.

Due to the current rapid technical progress, we summarize the latest
developments regarding LLMs in general, their application in medicine, as
well with regard to this review’s topic. We give an overview on studies
published outside the scope of our review (published after August 1st 2023)
as well as on the application of LLMs in clinical domains and tasks different
from IE from radiology reports.

As of June 2024, the majority of recently published LLMs, be it com-
mercial or open-source, are generative models, based on the decoder-block
of the original transformer architecture. Two development strategies can be
observed to increase model performance: The first strategy is about simply
increasing the amount of model parameters (and therefore, model size),
leading also to an increased demand for training data. The second strategy,
on the other hand, is about optimizing existing models based on different
strategies, including model pruning, quantization or distillation, as shown
by Rohanian et al.82. Recent models include the Gemini family (2024)83, the
T5 family84, LLama 3 (2024)85 andMixtral (2024)86. Moreover, research has
increasingly been focussing on developing domain-specific models, e.g.,
Meditron, Med-PaLM 2, or Med-Gemini for the healthcare domain87–89.

In the broad clinical domain, these recent, generative LLMs show
impressive capabilities, partly outperforming clinicians in test settings
regarding, e.g., medical summary generation90, prediction of clinical
outcomes91 and answering of clinical questions92. Dagdelen et al. have
recently demonstrated that, in the context of structured information
extraction from scientific texts, even generative models require a few hun-
dred training examples to effectively extract and organize information using
the open-source model Llama-293.

For the specific topic of structured IE from radiology reports, several
papers and pre-prints have been published since August 2023: In general, it
becomes apparent that resource-demanding generative models seem not to
showbetter results compared to encoder-based approaches, as shownby the
following studies:Whenapplying the open-sourcemodelVicuna94 to binary
label 13 concepts on document-level of radiology reports, Mukherjee et al.
showed onlymoderate to substantial agreementwith existing, less resource-
demanding approaches95. Document-level binary levelwas also investigated
byAdams et al., who comparedGPT-4 to a BERT-basedmodel further pre-
trained on German medical documents75. In this comparison, the smaller,
open-sourcemodel96 outperformedGPT-4 forfiveoutof nine concepts.The
authors also tested GPT-4 on English radiology reports, however not pro-
viding any detailed performance measures. Similarily, Hu et al. used
ChatGPT as a commercial platform to extract eleven concepts from radi-
ology reports without further fine-tuning or provision of examples97. The
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results show inferiority of ChatGPT upon comparison with a previously
described approach (BERT-basedmultiturnquestionanswering98) aswell as
a rule-based approach (averaged F1 scores: 0.88, 0.91, 0.93, respectively).
Mallio et al. qualitatively compared several closed-source generative LLMs
for structured reporting, although lacking clear results99. Additionally,
several key gaps remainwith the application of above-mentioned generative
models. For example, closed-source models continue getting larger,
requiring an increasing extent of scarce hardware resources and training
data. Moreover, although large generative models currently show the best
performance, they are less explainable than, e.g., encoder-based archi-
tectures prevalent in this review’s results100.

Generative models and encoder-based models each offer unique
advantages and disadvantages. Yang et al. show that generative models
might excel at generalizing to external data by applying in-context
learning101. Generative models are by design able to aggregate informa-
tion, and might be therefore more suitable to extract more complex con-
cepts. Recently, open-source models are becoming more efficient and
compact, as seen in recent advancements, e.g., the Phi 3 model family102.
However, generative models are usually computationally intensive and
require substantial resources for training and deployment.While still facing
issues regarding hallucination, this behavior might be improved by com-
bining LLMs with knowledge graphs, as introduced by Gilbert et al.103.

On the other hand, encoder-based models, such as BERT, are highly
effective at understanding and generating bidirectional contextual embed-
dings of input data, whichmakes themparticularly strong in tasks requiring
precise comprehension or annotation of text, such as extractive question
answering orNER.They tend to bemore resource-efficient during inference
compared to generative models. However, encoder-based models often
strugglewith generating coherent text, a taskwhere generativemodels excel.
Additionally, while encoder-based models can be fine-tuned for specific
tasks, they may not generalize as well as generative models. Moreover,
research and industry currently focus on the development of generative
models, as the last encoder-based architecture was published in 2021104. In
summary, while generative models currently offer flexibility and powerful
aggregation capabilities, encoder-based models provide efficiency and
precision.

In this review, we provide a comprehensive overview of recent
studies on LLM-based information extraction from radiology reports,
published between January 2018 andAugust 2023. No generativemodel
architectures for IE from radiology reports were described in literature.
After August 2023, generative models have been becoming more
common, however tending not to show a performance increase com-
pared to pre-transformer and encoder-based architectures. According
to the included studies, pre-transformer and encoder-based models
show promising results, although comparison is hindered by different
performance score calculation methods and vastly different data sets
and tasks. LLMs might improve generalizability of IE methods,
although external validation is performed in only seven studies. The
majority of studies used pre-trained LLMs without further pre-training
on their own data. So far, research has focused on IE from reports
related to CT and MRI examinations and most frequently on reports
related to the thorax region. We recognize a lack of publicly available
datasets. Furthermore, a lack of standardization of the annotation
process results in potential differences regarding data quality. The
source code is made available by only ten studies, limiting reproduci-
bility of the described methods. Most common challenges reported are
missing validation on external data and augmentation of the described
method to other clinical domains, report types, concepts, modalities
and anatomical regions.

No generative model architectures for IE from radiology reports were
described in literature. After August 2023, generative models have been
becoming more common, however tending not to show a performance
increase compared to pre-transformer and encoder-based architectures.
According to the included studies, pre-transformer and encoder-based
models show promising results, although comparison is hindered by

different performance score calculation methods and vastly different data
sets and tasks. LLMs might improve generalizability of IE methods,
although external validation is performed in only seven studies.

We conclude by highlighting the need to facilitate comparability of
studies and to review generative AI-based approaches.We therefore plan to
develop a reporting framework for clinical application of NLP methods.
This need is confirmed by Davidson et al. who also state that available
guidelines are limited14; journal-specific guidelines already exist105. Con-
sidering the periodical publication of larger, more capable generative
models, transparent and verifiable reporting of all aspects described in this
review is essential to compare and identify successful approaches. We fur-
thermore suggest future research to focus on the optimization and stan-
dardization of annotation processes to develop few-shot prompts.
Currently, the correlation between annotation quality, quantity and model
performance is unknown. Last, we recommend the development and
publication of standardized, multilingual datasets to foster external valida-
tion of models.

Methods
This scoping review was conducted according to the JBI Manual for evi-
dence synthesis and adheres to the PRISMA extension for scoping reviews
(PRISMA-ScR). Regardingmethodological details, we refer to the published
protocol for this review72. In this section, we give an overview on the applied
methodology and explain the adaptations made to the protocol. The
completed PRISMA-ScR checklist is provided in Supplementary Table 1.

Search strategy
The search strategy comprised three steps: First, a preliminary search was
conducted by searching two databases (Google Scholar andPubMed), using
keywords related to this review’s research question. Based on the results, a
list of relevant search and index termswas retrieved, which in turn served as
a basis for the iterative development of the full search query.

During search query development, different combinations of terms
and dimensions of the research topic were combined to build query com-
binations that were run on PubMed. Balancing of search results and rele-
vance showed that the inclusion of only two dimensions, “radiology” and
“information extraction”, showed the best balance regarding the quantity
and quality of results and was therefore chosen as the final search query.

Second, a systematic search was carried out using the final version of
the search query. The PubMed-based query was adapted tomeet syntactical
requirements of the other four databases, comprising IEEE Xplore, ACM
Digital Library,Webof ScienceCoreCollectionandEmbase.The systematic
search was conducted on 01/08/2023, and included all sources of evidence
(SOE) since database inception. No additional limits, restrictions, or filters
were applied. The full query for each database as well as a completed
PRISMA-S extension checklist are shown in Supplementary Table 2 and
Supplementary Table 3. Third, reference lists of included studies were
manually checked for additional sources of evidence and included if ful-
filling all inclusion criteria. No search updates were performed.

Inclusion criteria
Inclusion criteria were discussed among and agreed on by all three authors.
No separation was made between exclusion and inclusion criteria; reports
were included upon fulfillment of all the following six aspects:
• C.01: The full-text SOE is retrievable.
• C.02: The SOE was published after 31/12/2017.
• C.03: The SOE is published in a peer-reviewed journal or conference

proceeding.
• C.04: The SOE describes original research, excluding reviews, com-

ments, patents and white papers.
• C.05: The SOE describes the application of NLP methods for the

purpose of IE from free-text radiology reports.
• C.06: The described approach is LLM-based (defined as deep learning

models with more than one million parameters, trained on unlabeled
text data).
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Screening and data extraction
Record screening was performed by two authors (KD, DR), using the
online-platform Rayyan106. To improve alignment regarding inclusion cri-
teria between reviewers, afirst batch of 25 recordswas screened individually.
Two conflicting decisions were discussed and clarified, leading to the con-
sensus that BiLSTM-based architectures might also classify as LLMs and
should therefore be included. In order to validate this change, a secondbatch
of 25 records was screened and compared. Three conflicting decisions
helped to clarify that, when a LLM-based architecture is not explicitly stated
in the title or abstract, the record should still be marked as included to
maximize overall recall of relevant papers.

Upon clarification of the inclusion criteria, each remaining record (title,
abstract) was screened twice. After completion of the screening process,
conflicts (comprisingdifferingdecisionsor recordsmarkedas “maybe”)were
resolved by including all records that are marked at least once as “included”.

After screening, records were sought for full-text retrieval. Data
extraction was performed by one author (DR). During the extraction phase,
reports were ex post excluded when a violation of inclusion criteria became
apparent from the full-text. Reference lists of included papers were screened
for further reports to include. Changes to the published protocol for this
review are documented in Supplementary Table 4, including its description,
reason, and date.

Data availability
The complete list of extracted documents for all queried databases as well as
the completed data extraction table are available in the OSF repository, see
https://doi.org/10.17605/OSF.IO/RWU5M.

Code availability
For data screening, the publicly available online platform rayyain.ai was
used (free plan), see https://www.rayyan.ai.
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