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Abstract

Lately, propelled by the phenomenal advances
around the transformer architecture, the legal
NLP field has enjoyed spectacular growth. To
measure progress, well curated and challeng-
ing benchmarks are crucial. However, most
benchmarks are English only and in legal NLP
specifically there is no multilingual benchmark
available yet. Additionally, many benchmarks
are saturated, with the best models clearly
outperforming the best humans and achieving
near perfect scores. We survey the legal NLP
literature and select 11 datasets covering 24
languages, creating LEXTREME. To provide
a fair comparison, we propose two aggregate
scores, one based on the datasets and one on
the languages. The best baseline (XLM-R
large) achieves both a dataset aggregate score
a language aggregate score of 61.3. This indi-
cates that LEXTREME is still very challeng-
ing and leaves ample room for improvement.
To make it easy for researchers and practition-
ers to use, we release LEXTREME on hug-
gingface together with all the code required to
evaluate models and a public Weights and Bi-
ases project with all the runs.

1 Introduction

In the last decade, the discipline of Natural Lan-
guage Processing (NLP) has become more and
more relevant for Legal Artificial Intelligence, lead-
ing to a shift from symbolic to subsymbolic tech-
niques (Villata et al., 2022). Such a change can be
motivated partially by the nature of legal resources,
which appear mostly in a textual format (legislation,
legal proceedings, contracts, etc.).

Following closely the advances in the develop-
ment of NLP technologies, the legal NLP literature
(Zhong et al., 2020; Aletras et al., 2022; Katz et al.,
2023) is flourishing with the release of many new
resources, including large legal corpora (Hender-
son et al., 2022), task-specific datasets (Chalkidis

∗ Equal contribution.

Figure 1: Overview of the multilingual models on the
LEXTREME benchmark. The bubble size and text in-
side indicate the parameter count.

et al., 2021a; Shen et al., 2022), and pre-trained
legal-oriented language models (PLMs) (Chalkidis
et al., 2020; Zheng et al., 2021; Xiao et al., 2021;
Niklaus and Giofré, 2022).

In particular, the development and spread of the
so-called Foundation Models (Bommasani et al.,
2022), large neural networks trained on vast cor-
pora, led to massive performance improvements on
popular benchmarks such as GLUE (Wang et al.,
2019b) or SuperGLUE (Wang et al., 2019a). This
exemplifies the need for more challenging bench-
marks to continually measure progress. Legal
benchmark suites (Chalkidis et al., 2022a; Hwang
et al., 2022) to evaluate the performance of PLMs
in a more systematic way have been also developed,
showcasing the superiority of legal-oriented PLMs
over generic ones on downstream tasks.

However, general-purpose models, trained on
resources such as Wikipedia, may be insufficient to
address tasks in the legal domain. Indeed, such a
domain is strongly characterized both by its lexicon
and by specific knowledge typically not available
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outside of specialized domain resources. Laypeo-
ple even sometimes call the language used in legal
documents “legalese” or “legal jargon”, empha-
sizing its complexity. It is therefore necessary to
develop specialized Legal Language Models, to be
trained on large collections of legal documents, and
to be evaluated on proper legal benchmarks.

Existing benchmarks, such as GLUE, often
tackle linguistic tasks, such as semantic textual
similarity or natural language inference, with no
direct application in mind. There is a need for
benchmarks that tackle use cases as close as possi-
ble to the real world to align model development
with practical deployment needs.

The rising need to build NLP systems for lan-
guages different from English, the scarcity of tex-
tual resources for those languages and the spread
of code-switching in many cultures (Torres Ca-
coullos, 2020) has pushed researchers to design
new multilingual learning approaches. This, in
turn, has brought the necessity to develop proper
multilingual benchmarks to evaluate multilingual
language models (Conneau et al., 2020). This
is of paramount importance for legal NLP, espe-
cially in case of inherently multinational (Euro-
pean Union, Council of Europe), or multilingual
(Canada, Switzerland) legal systems.

In this work, we propose a challenging multilin-
gual benchmark for the legal domain containing
datasets with valuable use cases, calling it LEX-
TREME. We survey the literature and select 11
datasets out of 108 papers based on our exclusion
and inclusion criteria. We evaluate five popular
multilingual encoder-based language models and
find that model size correlates well with perfor-
mance on LEXTREME. For easy evaluation, we
release the aggregate dataset on the huggingface
hub1 and the code to run experiments on GitHub.2

Contributions
The contributions of this paper are two-fold:

1. We review the literature for suitable legal
datasets and compile a multilingual legal
benchmark of 11 datasets in 24 languages.

2. We evaluate various baselines on LEX-
TREME to provide a reference point for re-
searchers and practitioners to compare to.

1https://huggingface.co/datasets/
joelito/lextreme

2https://github.com/JoelNiklaus/
LEXTREME

2 Related Work

2.1 Benchmarks for Language Models
GLUE (Wang et al., 2019b) is one of the first
benchmarks for the evaluation of general-purpose
neural language models. It is a set of supervised
sentence understanding predictive tasks in the En-
glish language that was created through aggre-
gation and curation of already existing datasets.
GLUE became quickly obsolete with the ad-
vent of advanced contextual language models
such as BERT (Devlin et al., 2019), which per-
formed extremely well on most of them. SUPER-
GLUE (Wang et al., 2019a) was later proposed as
an updated version of GLUE, including new pre-
dictive tasks that are solvable by humans but are
difficult for machines. Both benchmarks proposed
an evaluation computed as the aggregation of the
scores obtained by the same model on each task.
They are also agnostic regarding the pre-training of
the model, and do not provide a specific corpus for
it. Following this trend, many other benchmarks
have been proposed, Table 1 provides an overview
of the most popular ones.

MMLU (Hendrycks et al., 2021) is specifically
designed to evaluate the knowledge acquired dur-
ing pre-training of the model by including only
zero-shot and few-shot learning tasks. It contains
about 16K multiple-choice questions divided into
57 subtasks, covering subjects in the humanities,
social sciences, hard sciences, and other areas.

SUPERB (Yang et al., 2021) and SUPERB-
SG (Tsai et al., 2022) were proposed for speech
data, unifying popular datasets. They mainly dif-
fer in SUPERB-SG not including only predictive
tasks but also generative ones, a characteristic that
makes it different from all the other benchmarks
discussed in this section. Another important dif-
ference is that SUPERB-SG includes tasks such
as speech translation and cross-lingual automatic
speech recognition, for which knowledge of lan-
guages other than English is beneficial. Neither of
the two proposes an aggregated score.

XTREME (Hu et al., 2020) is a benchmark
specifically designed to evaluate the ability of cross-
lingual generalization of models. It includes 6
cross-lingual predictive tasks over 10 datasets of
miscellaneous texts, covering a total of 40 lan-
guages. While some original datasets were already
designed for cross-lingual tasks, others were ex-
tended by translating part of the data through hu-
man professionals and automatic methods.

https://huggingface.co/datasets/joelito/lextreme
https://huggingface.co/datasets/joelito/lextreme
https://github.com/JoelNiklaus/LEXTREME
https://github.com/JoelNiklaus/LEXTREME


Name Source Domain Tasks Datasets Languages Agg. Score

GLUE (Wang et al., 2019b) Misc. Texts 7 9 English Yes
SUPERGLUE (Wang et al., 2019a) Misc. Texts 8 8 English Yes
CLUE (Xu et al., 2020) Misc. Texts 9 9 Chinese Yes
XTREME (Hu et al., 2020) Misc. Texts 6 9 40 Yes
BLUE (Peng et al., 2019) Biomedical Texts 5 10 English Yes
CBLUE (Zhang et al., 2022) Biomedical Texts 9 9 Chinese Yes
MMLU (Hendrycks et al., 2021) Misc. Texts 1 57 English Yes
LexGLUE (Chalkidis et al., 2022b) Legal Texts 7 6 English Yes
LBOX (Hwang et al., 2022) Legal Texts 5 5 Korean Yes
LEXTREME (our work) Legal Texts 18 11 25 Yes

SUPERB (Yang et al., 2021) Speech 10 10 English No
SUPERB-SG (Tsai et al., 2022) Speech 5 5 English No

TAPE (Rao et al., 2019) Proteins 5 5 n/a No

Table 1: Characteristics of popular existing NLP benchmarks.

2.2 Benchmarks for Legal Language Models

LEXGLUE (Chalkidis et al., 2022b) is the first
benchmark for the legal domain and covers 6 pre-
dictive tasks over 5 datasets made of textual docu-
ments in English from the US, EU, and CoE. While
some tasks may not require specific legal knowl-
edge to be solved, others would probably need, or
at least benefit from, information regarding the EU
or US legislation on the specific topic. Among the
main limitations of their benchmark, Chalkidis et al.
highlight its monolingual nature and remark that
“there is an increasing need for developing models
for other languages”. Our work is strongly inspired
by LEXGLUE and our purpose is to propose a
benchmark that, we hope, will help the develop-
ment of multilingual models for the legal domain.

In a similar direction, Hwang et al. (2022) re-
leased the LBOX benchmark. It covers 3 down-
stream tasks: two legal judgement prediction (LJP)
tasks, and one summarization task in Korean.

The LEGALBENCH initiative (Guha et al., 2022)
aims to create an open and collaborative legal rea-
soning benchmark where legal practitioners and
other domain experts can contribute by submitting
tasks that will be addressed using language models.
At its creation, the authors have already added 44
lightweight tasks. While most tasks require legal
reasoning based on the common law system, there
is also a clause classification task.

Concerning language models specifically trained
for the legal domain, many have been proposed for
specific languages but, to the best of our knowl-
edge, no multilingual model has been proposed
yet. Legal language models have been proposed

for English (Chalkidis et al., 2020; Ying and Haber-
nal, 2022), French (Douka et al., 2021), Roma-
nian (Masala et al., 2021), Italian (Tagarelli and
Simeri, 2022; Licari and Comandè, 2022), Chi-
nese (Xiao et al., 2021), Arabic (Al-Qurishi et al.,
2022), Korean (Hwang et al., 2022), and Por-
tuguese (Ciurlino, 2021). For an overview of the
many tasks related to the automatic analysis of legal
texts, we suggest reading the works of Chalkidis
et al. (2022b) and Zhong et al. (2020).

3 LEXTREME Tasks and Datasets

3.1 LEXTREME Dataset Selection

To select the datasets for the LEXTREME bench-
mark, we formulate various criteria. We first sys-
tematically explore the literature via the ACL an-
thologyto find relevant datasets for the legal do-
main. We identify various venues, such as ACL,
EACL, NAACL, EMNLP, LREC, ICAIL, and the
NLLP workshop. We search the literature of these
venues for the years 2010 to 2022. We search for
some common keywords (case insensitive) that
are related to legal datasets, e.g., criminal, judi-
cial, judgment, jurisdictions, law, legal, legislation,
dataset, and corpus. These keywords help to se-
lect potentially relevant papers, i.e., 108 papers.
Then, three authors analyze these papers based on
the inclusion and exclusion criteria given below to
ensure that they indeed propose a legal dataset.

Inclusion criteria

I1: It is about legal text (e.g., patents are not con-
sidered part of legal text),



I2: It performs legal tasks (e.g., judgment pre-
diction) and not other linguistic tasks such as
Part-of-Speech (POS) tagging,

I3: It performs NLU tasks (e.g., information re-
trieval tasks are not considered due to their
evaluation complexity),

I4: The tasks are in one of the European lan-
guages (e.g., China has its own large legal
Natural Language Processing (NLP) commu-
nity and likely would not benefit much from
multilingual models), and

I5: The dataset is annotated by humans directly or
indirectly (e.g., judgement labels are extracted
with regexes)

Exclusion criteria

E1: The dataset is not publicly available,

E2: The dataset does not contain a public license,

E3: The dataset contains labels that are generated
with ML systems.

E4: It is not a peer-reviewed paper

Task # Examples # Labels

BCD-J 3234 / 404 / 405 3 / 3 / 3
BCD-U 1715 / 211 / 204 2 / 2 / 2
GAM 19271 / 2726 / 3078 4 / 4 / 4
GLC-V 28536 / 9511 / 9516 47 / 47 / 47
GLC-C 28536 / 9511 / 9516 386 / 377 / 374
GLC-S 28536 / 9511 / 9516 2143 / 1679 / 1685
SJP 59709 / 8208 / 17357 2 / 2 / 2
OTS-UL 2074 / 191 / 417 3 / 3 / 3
OTS-CT 19942 / 1690 / 4297 9 / 8 / 9
C19 3312 / 418 / 418 8 / 8 / 8
MEU-1 817239 / 112500 / 115000 21 / 21 / 21
MEU-2 817239 / 112500 / 115000 127 / 126 / 127
MEU-3 817239 / 112500 / 115000 500 / 454 / 465
GLN 17699 / 4909 / 4017 17 / 17 / 17
LNR 7552 / 966 / 907 11 / 9 / 11
LNB 7828 / 1177 / 1390 13 / 13 / 13
MAP-C 27823 / 3354 / 10590 13 / 11 / 11
MAP-F 27823 / 3354 / 10590 44 / 26 / 34

Table 2: Overview of datasets and their tasks. The
fields # Examples and # Labels provide the values for
the splits train, validation, test. For a detailed overview
of for the language-specific subsets of each multilin-
gual task, see Table 7 and 8.

After applying the above criteria, we reduce
from 108 to 11 datasets. We provide the list of
all these datasets in the online repository.3

3https://github.com/JoelNiklaus/
LEXTREME

Dataset Jurisdiction Languages

BCD BR pt
GAM DE de
GLC GR el
SJP CH de, fr, it
OTS EU de, en, it, pl
C19 BE, FR, HU, IT,

NL, PL, UK
en, fr, hu, it,
nb, nl, pl

MEU EU 24 EU langs
GLN GR el
LNR RO ro
LNB BR pt
MAP EU 24 EU langs

Table 3: Overview of datasets and the jurisdiction as
well as the languages that they cover. The 24 EU lan-
guages are: bg, cs, da, de, el, en, es, et, fi, fr, ga, hu, it,
lt, lv, mt, nl, pt, ro, sk, sv

3.2 LEXTREME Tasks

LEXTREME constist of three classification task
types: Single Label Text Classification (SLTC),
Multi Label Text Classification (MLTC), and
Named Entity Recognition (NER). We use the
existing train, validation, and test splits if present.
In the other cases we split the data ourselves (80%
train, 10% validation and test each). In the follow-
ing, we briefly describe the selected datasets. For
more information about the number of examples
and label classes per split for each task, see Table 2,
7 and 8. For a detailed overview of the jurisdictions
as well as the number of languages covered by each
dataset, see Table 3.

3.3 LEXTREME Datasets

Each dataset can be either monolingual or mul-
tilingual and can have several configurations or
(fine-tuning) tasks, which are the basis of our anal-
yses, i.e., the pretrained models have always been
fine-tuned on a single task.

Brazilian Court Decisions (BCD) Legal sys-
tems are often huge and complex, and the infor-
mation is scattered across various sources. Thus,
predicting case outcomes from multiple vast vol-
umes of litigation is a difficult task. Lage-Freitas
et al. (2022) propose an approach to predict Brazil-
ian legal decisions to support legal practitioners.
We use their dataset from the State Supreme Court
of Alagoas (Brazil). The input to the models is al-
ways the case description. We perform two SLTC

https://github.com/JoelNiklaus/LEXTREME
https://github.com/JoelNiklaus/LEXTREME


tasks: One (BCD-J) is to predict the approval or
dismissal of the case or appeal with three labels
no, partial, yes, and another (BCD-U) is to predict
the unanimity on the decision alongside two labels
unanimity, not-unanimity.

German Argument Mining (GAM) Identifying
arguments in court decisions is an important and
challenging task for legal practitioners. Urchs. et al.
(2021) compiled a dataset of 200 German court de-
cisions for classifying sentences according to their
argumentative function. We use their dataset to
perform an MLTC task. The input to the models
is a sentence and the output is labeled according
to four categories: conclusion, definition, subsump-
tion, other.

Greek Legal Code (GLC) Legal documents can
cover a wide variety of topics, which makes accu-
rate topic classification all the more important. Pa-
paloukas et al. (2021) compiled a dataset for topic
classification of Greek legislation documents. The
documents cover 47 main thematic topics which are
called volumes. Each of them is divided into the-
matic sub categories which are called chapters and
subsequently, each chapter breaks down to subjects.
Therefore, the dataset is used to perform three dif-
ferent SLTC tasks along volume level (GLC-V),
chapter level (GLC-C), and subject level (GLC-S).
The input to the models is the entire document, and
the output is one of the several topic categories.

Swiss Judgment Prediction (SJP) Niklaus et al.
(2021, 2022b), focus on predicting the judgment
outcome of the cases from the Swiss Federal
Supreme Court (FSCS). We use their dataset of
85k cases. The input to the models is the appeal
description, and the output is whether the appeal is
approved or dismissed. It is also a SLTC task.

Online Terms of Service (OTS) While the ben-
efits of multilingualism in the EU legal world are
well known, creating an official version of every
legal act in 24 languages raises interpretative chal-
lenges. Drawzeski et al. (2021), attempt to auto-
matically detect unfair clauses in Terms of Service.
We use their dataset of 100 contracts to perform
a SLTC and MLTC task. In the SLTC task (OTS-
UL), the input to the models is a sentence, and the
output presents the sentence classified into three
levels of unfairness. In the MLTC task (OTS-CT),
the model identifies the sentence for various clause
topics.

COVID19 Emergency Event (C19) The
COVID-19 pandemic showed various exceptional
measures governments around the world have
taken to contain the virus. Tziafas et al. (2021),
presented a dataset, also known as EXCEPTIUS,
that contains legal documents with sentence-level
annotation from several European countries to
automatically identify the measures. We use their
dataset to perform only one task, i.e., the MLTC
task of identifying the type of measure described
in a sentence. The input to the models are the
sentences, and the output is neither or at least one
of the measurement types.

MultiEURLEX (MEU) Multilingual transfer
learning has gained significant attention recently
due to its increasing applications in NLP tasks.
Chalkidis et al. (2021b), explored the cross-lingual
transfer for legal NLP and presented a corpus of
65K EU laws. They annotated each law document
with multiple labels from the EUROVOC taxon-
omy. We perform a MLTC task to identify labels
(given in the taxonomy) for each document. Since
the taxonomy exists on multiple levels, we prepare
configurations according to three levels (MEU-1,
MEU-2, MEU-2).

Greek Legal NER (GLN) Identifying various
named entities from natural language text plays an
important role for Natural Language Understand-
ing (NLU). Papaloukas et al. (2021) compiled an
annotated dataset for NER in Greek legal docu-
ments. The source material are 254 daily issues
of the Greek Government Gazette over the period
2000-2017. In all NER tasks of LEXTREME the
input to the models is the list of tokens, and the
output is an entity label for each token.

LegalNERo (LNR) Similar to GLN, Pais et al.
(2021) manually annotated Romanian legal docu-
ments for various named entities. The dataset is
derived from 370 documents from the larger MAR-
CELL Romanian legislative subcorpus4.

LeNER BR (LNB) Luz de Araujo et al. (2018)
compiled a dataset for NER for Brazilian legal doc-
uments. To compose the dataset, 66 legal docu-
ments from several Brazilian Courts were collected.
Additionally, four legislation documents were col-
lected, resulting a total of 70 documents that were
annotated for named entities.

4https://marcell-project.eu/deliverables.html

https://marcell-project.eu/deliverables.html


Model Source Params Vocab Specs Corpora # Langs

MiniLM Wang et al. (2020) 118M 250K 1M steps / BS 256 2.5T CC100 data 100
DistilBert Sanh et al. (2019) 135M 120K BS up to 4000 Wikipedia 104
mDeberta-v3 He et al. (2020, 2021) 278M 128K 500K steps / BS 8192 2.5T CC100 data 100
XLM-R base Conneau et al. (2020) 278M 250K 1.5M steps / BS 8192 2.5T CC100 data 100
XLM-R large Conneau et al. (2020) 560M 250K 1.5M steps / BS 8192 2.5T CC100 data 100

Table 4: Multilingual Models: All models can process up to 512 tokens. BS is short for batch size. Params is the
total number of parameters (including the embedding layer).

MAPA (MAP) de Gibert et al. (2022), built a
multilingual corpus based on EUR-Lex (Baisa
et al., 2016) for NER. The dataset comes in two
configurations, i.e., two NER tasks, as it has been
annotated at a coarse-grained (MAP-C) and fine-
grained (MAP-F) level. The structure of the dataset
is the same as the other datasets for NER.

4 Models Considered

Since our benchmark only contains NLU tasks, we
consider encoder only models for simplicity.

MiniLM MiniLM (Wang et al., 2020) is the re-
sult of a novel task-agnostic compression tech-
nique, also called distillation, in which a com-
pact model — the so-called student — is trained
to reproduce the behaviour of a larger pre-trained
model — the so-called teacher. This is achieved
by deep self-attention distillation, i.e. only the
self-attention module of the last Transformer layer
of the teacher, which stores a lot of contextual
information (Jawahar et al., 2019), is distilled.
The student is trained by closely imitating the
teacher’s final Transformer layer’s self-attention
behavior. To aid the learner in developing a better
imitation, (Wang et al., 2020) also introduce the
self-attention value-relation transfer in addition to
the self-attention distributions. The addition of a
teacher assistant results in further improvements.
For the training of multilingual MiniLM, XLM-
RBASE was used.

DistilBERT DistilBERT (Sanh et al., 2019) is a
more compressed version of BERT (Devlin et al.,
2019) using teacher-student learning, similar to
MiniLM. DistilBERT is distilled from BERT, thus
both share a similar overall architecture. The pooler
and token-type embeddings are eliminated, and the
number of layers is decreased by a factor of 2 in
DistilBERT. DistilBERT is distilled in very large
batches while utilizing gradient accumulation and
dynamic masking, but without the next sentence

prediction objective. DistilBERT was trained on
the same corpus as the original BERT.

mDEBERTa He et al. (2020) suggest a new
model architecture called DeBERTa (Decoding-
enhanced BERT with disentangled attention),
which employs two novel methods to improve the
BERT and RoBERTa models. The first is the disen-
tangled attention mechanism, in which each word
is represented by two vectors that encode its con-
tent and position, respectively, and the attention
weights between words are calculated using disen-
tangled matrices on their respective contents and
relative positions. To predict the masked tokens
during pre-training, an enhanced mask decoder is
utilized, which incorporates absolute positions in
the decoding layer. Additionally, the generaliza-
tion of models is enhanced through fine-tuning us-
ing a new virtual adversarial training technique.
He et al. (2021) introduce mDEBERTa-v3 by fur-
ther improving the efficiency of pre-training by
replacing Masked-Language Modeling (MLM) in
DeBERTa with the task of replaced token detec-
tion (RTD) where the model is trained to predict
whether a token in the corrupted input is either
original or replaced by agenerator. Further im-
provements are achieved via gradient-disentangled
embedding sharing (GDES).

XLM-RoBERTa XLM-R (Conneau et al., 2020)
is a multilingual language model which has the
same pretraining objectives as RoBERTa (Liu et al.,
2019), such as dynamic masking, but not next sen-
tence prediction. It is pre-trained on a large corpus
comprising 100 languages. The authors report a sig-
nificant performance gain over multilingual BERT
(mBERT) in a variety of tasks with results com-
petitive with state-of-the-art monolingual models
(Conneau et al., 2020).

4.1 Hierarchical Variants

A significant part of the datasets consists of very
long documents, the best examples being all vari-



ants of MultiEURLEX, cf. Figure 12. However,
Transformer-based models usually allow a maxi-
mum input length of 512 tokens. It is possible to
use the models without further ado for documents
that exceed this length by far. However, this can
only be achieved by a massive truncation of the
original document. This procedure has the conse-
quence that only the first section of a document is
available for classification tasks. This is the reason
why we used hierarchical variants of pretraining
models for finetuning on data sets with particularly
long documents (cf. histograms).

The hierarchical variants used in the study are
broadly equivalent to those in (Chalkidis et al.,
2021c; Niklaus et al., 2022a). First, we con-
vert each document into a list of equal-length
paragraphs. Afterward, we use a pre-trained
Transformer-based model to encode each of these
paragraphs separately and to obtain the [CLS] em-
bedding of each paragraph which can be used as a
context-unaware paragraph representation. In or-
der to make them context-aware, i.e. aware of the
surrounding paragraphs, the paragraph representa-
tions are fed into a 2-layered Transformer encoder
with varying specifications depending on the model
type. Finally, max-pooling over the context-aware
paragraph representations is deployed, which re-
sults in a document representation that is fed to a
classification layer.

5 Experimental Setup

Some datasets were highly imbalanced, one of the
best examples being BCD-U with a proportion of
the minority class of about 2%. Therefore, we
applied random oversampling on all tasks of the
SLTC datasets, except for GLC, since all its subsets
have too many labels, which would have led to a
drastic increase in the data size and thus in the
computational costs for finetuning. For each run,
we used the same hyperparameters, as described in
Section A.2.

As described in section 4.1, some tasks contain
very long documents, which required the usage
of hierarchical variants with sequence lengths that
go beyond 512. Based on the distribution of the
sequence length per example for each task (cf. sec-
tion D), we decided on suitable sequence lengths
for each task before finetuning. A list of suitable
sequence lengths can be found in A.1. Tasks with
a maximum sequence length of over 512 required
the usage of hierarchical variants.

Evaluation Metrics We use the macro-F1 score
for all datasets to ensure comparability across the
entire benchmark, since it can be computed for
both text classification and NER tasks. Mathew’s
Correlation Coefficient (MCC) is a suitable score
for evaluating text classification tasks but its appli-
cability to NER tasks is unclear. For brevity, we
do not display additional scores, but more detailed
(such as precision and recall, and scores per seed)
and additional scores (such as MCC) can be found
online on our Weights and Biases project5.

Aggregate Score We acknowledge that the
datasets included in LEXTREME are diverse and
hard to compare due to variations in the number of
samples and task complexity (Raji et al., 2021a).
This is why we always report the scores for each
dataset subset, enabling a fine-grained analysis.
However, we believe that by taking the following
three measures, an aggregate score can provide
more benefits than drawbacks, encouraging the
community to evaluate multilingual legal models
on a curated benchmark facilitating comparisons.

We (a) evaluate all datasets with the same score
(macro-F1) making aggregation more intuitive and
easier to interpret, (b) aggregating the F1 scores
again using the harmonic mean, since F1 scores
are already rates and obtained using the harmonic
mean over precision and recall, following Tatiana
and Valentin (2021), and (c) basing our final aggre-
gate score on two intermediate aggregate scores ––
the dataset aggregate and language aggregate score
– thus weighing datasets and languages equally pro-
moting model fairness and robustness.

The final LEXTREME score is computed using
the harmonic mean of the dataset and the language
aggregate score. We compute the dataset aggregate
score by taking the successive harmonic mean of
(1.) the languages inside the configurations (e.g.,
de,fr,it within SJP), (2.) the configurations inside
the datasets (e.g., OTS-UL, OTS-CT within OTS),
and (3.) the datasets inside LEXTREME (BCD,
GAM, etc.). We compute the language aggregate
score by taking the successive harmonic mean of
(1.) the configurations inside the datasets, (2.) the
datasets for the given language (e.g., MAP and
MEU for lv), and (3.) the languages inside LEX-
TREME (bg,cs, etc.).

5https://wandb.ai/lextreme/paper_
results

https://github.com/JoelNiklaus/LEXTREME/blob/main/visualizations/histograms/Histograms_for_datasets_with_hierarchical_models.jpg
https://wandb.ai/lextreme/paper_results
https://wandb.ai/lextreme/paper_results


Model BCD GAM GLC SJP OTS C19 MEU GLN LNR LNB MAP Agg.

MiniLM 53.0 73.3 42.1 67.7 44.1 2.6 62.0 40.5 46.8 86.0 55.5 52.2
DistilBERT 54.5 69.5 62.8 66.8 56.1 22.2 63.6 38.1 48.4 78.7 55.0 56.0
mDeBERTa v3 57.6 70.9 52.2 69.1 66.5 25.5 65.1 42.2 46.6 87.8 60.2 58.5
XLM-R base 63.5 72.0 56.8 69.3 67.8 26.4 65.6 47.0 47.7 86.0 56.1 59.9
XLM-R large 58.7 73.1 57.4 69.0 75.0 29.0 68.1 48.0 49.5 88.2 58.5 61.3

Table 5: Dataset aggregate scores for multilingual models. The best scores are in bold.

Model bg cs da de el en es et fi fr ga hr hu it lt lv mt nl pl pt ro sk sl sv Agg.

MiniLM 64.0 57.7 55.4 60.1 48.9 42.8 63.8 59.7 56.6 48.5 41.5 62.2 41.8 45.6 59.8 60.2 55.7 38.8 33.5 63.5 58.4 58.9 62.2 59.4 54.1
DistilBERT 65.3 60.2 57.4 64.1 53.1 54.0 66.9 57.4 55.7 55.8 45.5 63.1 39.9 54.9 58.0 57.7 57.3 42.0 43.6 64.7 57.4 59.0 63.3 59.2 56.5
mDeBERTa v3 61.9 60.6 59.3 66.6 54.0 58.9 66.9 60.3 61.1 57.0 50.2 65.0 44.2 59.7 63.7 61.4 61.2 48.1 50.2 67.9 60.8 65.2 65.2 65.4 59.8
XLM-R base 68.3 61.3 58.5 66.0 54.7 58.6 63.8 59.3 57.5 57.7 47.8 65.9 43.3 59.6 60.3 60.8 58.0 45.0 52.0 68.2 59.2 60.3 66.2 61.7 58.9
XLM-R large 64.5 63.3 65.1 68.3 59.6 61.9 70.0 61.3 60.9 57.9 50.3 68.3 44.7 62.9 66.1 65.5 60.1 43.9 55.0 68.1 60.2 62.8 68.2 62.5 61.3

Table 6: Language aggregate scores for multilingual models. The best scores are in bold.

6 Results

In this section, we discuss the main result of our
evaluation of the baseline models. Scores on the
validation datasets and standard deviations across
seeds can be found in Appendix C.

We show the dataset and language aggregated
results in Tables 5 and 6 respectively. For both
the dataset aggregate and the language aggregate
scores, we see a clear trend that larger models per-
form better. However, when looking at the indi-
vidual datasets and languages, the scores are more
erratic. We notice that on some datasets, such as
C19, GLC or OTS, the models vary greatly, with
differences as large as 29.2 between the worst per-
forming MiniLM and the best performing XLM-
R large. MiniLM seems to struggle greatly with
these three datasets, while even achieving the best
performance on GAM. On other datasets, such as
SJP, MEU, LNR, and MAP the models are very
close together (6 points or fewer between best and
worst model). SJP, MEU and MAP are the largest
datasets in LEXTREME, thus probably decreas-
ing the influence of the pretraining on downstream
performance and leveling the playing field. LNR,
however, is the smallest NER task, opposing this
hypothesis. In contrast to the inconsistent results
on the datasets, we notice, that XLM-R performs
best on most languages. Additionally, we note that
the variability of the models within a language is
similar to the variability within a dataset, however,
we don’t see extreme cases such as GLC or OTS.

7 Conclusions and Future Work

Conclusions

We survey the literature and select 11 datasets out
of 108 papers with rigorous criteria to compile

the first multilingual benchmark for legal NLP.
By open-sourcing both the dataset and the code,
we invite researchers and practitioners to evalu-
ate any future multilingual models on our bench-
mark. We provide baselines for five popular multi-
lingual encoder-based language models of different
sizes. We hope that this benchmark will foster the
creation of novel legal multilanguage models and
therefore contribute to the progress of natural le-
gal language processing. We imagine this work as
a living benchmark and invite the community to
extend it with new suitable datasets.

Future Work

In future work, we will extend this benchmark with
other NLU tasks and also generation tasks such as
summarization, simplification, or translation. An-
other avenue of future work can be the extension
with datasets in more languages or from jurisdic-
tions not yet covered in the current version. Finally,
we leave the evaluation of other models such as
mT5 (Xue et al., 2021) to future work.

Limitations

It is important to not exceed with the enthusiasm
for language models and the ambitions of bench-
marks: many recent works have addressed the lim-
its of these tools and analyzed the consequences
of their misuses. For example, Bender and Koller
(2020) argue that language models do not really
learn “meaning”. Koch et al. (2021) evaluate the
use of datasets inside scientific communities and
highlight that many machine learning communi-
ties focus on very few datasets and that often these
dataset are “borrowed” from other communities.
Raji et al. (2021b) offer a detailed exploration of
the limits of popular “general” benchmarks, such as



GLUE (Wang et al., 2019b) and ImageNET (Deng
et al., 2009). Their analysis covers 3 aspects: lim-
ited task design, de-contextualized data and perfor-
mance reporting, inappropriate community use.

The first problem concerns the fact that typically
tasks are not chosen considering proper theories
and selecting what would be needed to prove gener-
ality. Instead, they are limited to what is considered
interesting by the community, what is available, or
other similar criteria. These considerations hold
also for our work. Therefore, we can not claim that
our benchmark can be used to assess the “gener-
ality” of a model or proving that it “understands
natural legal language”.

The second point address the fact that any task,
data, or metric are limited to their context, there-
fore “data benchmarks are closed and inherently
subjective, localized constructions”. In particular,
the content of the data can be too different from
real data and the format of the tasks can be too
homogeneous compared to human activities. More-
over, any dataset inherently contains biases. We
tackle this limitation by deciding to include only
tasks and data that are based on real world scenar-
ios, in an effort to minimize the difference between
the performance of a model on our benchmark and
its performance on a real world problem.

The last aspect regards the negative conse-
quences that benchmarks can have. The compet-
itive testing may encourage misbehavior and the
aggregated performance evaluation does create a
mirage of cross-domain comparability. The pres-
ence of popular benchmarks can influence a sci-
entific community up to the point of steering to-
wards techniques that perform well on that specific
benchmark, in disfavor of those that do not. Fi-
nally, benchmarks can be misused in marketing to
promote commercial products while hiding their
flaws. Since these behaviour obviously can not
be forecasted in advance, but we hope that this
analysis of the shortcomings of our work will be
sufficient to prevent misuses of our benchmark and
will also inspire research directions for complemen-
tary future works. For what specifically concerns
aggregated evaluations, they provide an intuitive
but imprecise understanding of the performance
of a model. While we do not deny their potential
downsides, we believe that their responsible use is
beneficial, especially when compared to the evalua-
tion of a model on only an arbitrarily selected set of
datasets. Therefore, we have decided to provide an

aggregated performance evaluation and to weight
languages and tasks equally to make it as robust
and fair as possible.

It is important to remark that while Raji et al.
and Koch et al. argument against the misrepresen-
tations and the misuses of benchmarks and datasets,
they do not argue against their usefulness. On the
contrary, they consider the creation and adoption
of novel benchmarks a sign of a healthy scientific
community.

Ethics Statement

The scope of this work is to release a unified multi-
lingual legal NLP benchmark to accelerate the
development and evaluation of multilingual legal
language models. A transparent multilingual and
multinational benchmark for NLP in the legal do-
main might serve as an orientation for scholars and
industry researchers by broadening the discussion
and helping practitioners to build assisting tech-
nology for legal professionals and laypersons. We
believe that this is an important application field,
where research should be conducted (Tsarapatsanis
and Aletras, 2021) to improve legal services and
democratize law, while also highlight (inform the
audience on) the various multi-aspect shortcomings
seeking a responsible and ethical (fair) deployment
of legal-oriented technologies.

Nonetheless, irresponsible use (deployment) of
such technology is a plausible risk, as in any other
application (e.g., online content moderation) and
domain (e.g., medical). We believe that similar
technologies should only be deployed to assist hu-
man experts (e.g., legal scholars in research, or
legal professionals in forecasting or assessing legal
case complexity) with notices on their limitations.

All datasets included in LEXTREME, are pub-
licly available and have been previously published.
We referenced the original work and encourage
LEXTREME users to do so as well. In fact, we
believe this work should only be referenced, in
addition to citing the original work, when experi-
menting with multiple LEXTREME datasets and
using the LEXTREME evaluation infrastructure.
Otherwise, only the original work should be cited.
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C Detailed Multilingual Results
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D Histograms

In the following, we provide the histograms for the distribution of the sequence length of the
input (sentence or entire document) from each dataset. The length is measured by counting the
tokens using the tokenizers of the multilingual models, i.e., DistilBERT, MiniLM, mDeBERTa
v3, XLM-R base, XLM-R large. We only display the distribution within the 99th percentile; the
rest is grouped together at the end.

Figure 2: Histogram for dataset BCD-J

Figure 3: Histogram for dataset BCD-U



Figure 4: Histogram for dataset GAM

Figure 5: Histogram for dataset GLC-V

Figure 6: Histogram for dataset GLC-C



Figure 7: Histogram for dataset GLC-S

Figure 8: Histogram for dataset SJP

Figure 9: Histogram for dataset OTS-UL



Figure 10: Histogram for dataset OTS-CT

Figure 11: Histogram for dataset C19

Figure 12: Histogram for dataset MEU-1



Figure 13: Histogram for dataset GLN

Figure 14: Histogram for dataset LNR

Figure 15: Histogram for dataset LNB



Figure 16: Histogram for dataset MAP-C

Figure 17: Histogram for dataset MAP-F


