Subdirectly Irreducible and Semisimple Double Boolean Algebras

Kwuida, Léonard; Temgoua Alomo, Etienne Romuald (2024). Subdirectly Irreducible and Semisimple Double Boolean Algebras In: Cabrera, Inma P.; Ferré, Sébastien; Obiedkov, Sergei (eds.) Conceptual Knowledge Structures: First International Joint Conference, CONCEPTS 2024, Cádiz, Spain, September 9–13, 2024, Proceedings. Lecture Notes in Computer Science: Vol. 14914 (pp. 3-19). Cham: Springer Nature 10.1007/978-3-031-67868-4_1

Full text not available from this repository. (Request a copy)

Double Boolean algebras are algebras of type (2, 2, 1, 1, 0, 0) introduced by Rudolf Wille to capture the equational theory of protoconcept algebras. A famous theorem of Birkhoff says that any variety is determined by its subdirectly irreducible members. In this work we give a construction that leads to a concrete embedding of double Boolean algebras into the protoconcept algebra. We characterize subdirectly irreducible, simple and semisimple double Boolean algebras.

Item Type:

Book Section (Book Chapter)

Division/Institute:

Business School > Institute for Applied Data Science & Finance
Business School > Institute for Applied Data Science & Finance > Applied Data Science
Business School

Name:

Kwuida, Léonard0000-0002-9811-0747;
Temgoua Alomo, Etienne Romuald;
Cabrera, Inma P.;
Ferré, Sébastien and
Obiedkov, Sergei

ISSN:

1611-3349

ISBN:

978-3-031-67867-7

Series:

Lecture Notes in Computer Science

Publisher:

Springer Nature

Language:

English

Submitter:

Léonard Kwuida

Date Deposited:

21 Aug 2024 10:45

Last Modified:

21 Aug 2024 10:45

Publisher DOI:

10.1007/978-3-031-67868-4_1

URI:

https://arbor.bfh.ch/id/eprint/22208

Actions (login required)

View Item View Item
Provide Feedback