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Abstract: Optical 3D scanning applications are increasingly used in various medical fields. Setups
involving multiple adjustable systems require repeated extrinsic calibration between patients. Existing
calibration solutions are either not applicable to the medical field or require a time-consuming process
with multiple captures and target poses. Here, we present an application with a 3D checkerboard
(3Dcb) for extrinsic calibration with a single capture. The 3Dcb application can register captures with
a reference to validate measurement quality. Furthermore, it can register captures from camera pairs
for point-cloud stitching of static and dynamic scenes. Registering static captures from TIDA-00254 to
its reference from a Photoneo MotionCam-3D resulted in an error (root mean square error ± standard
deviation) of 0.02 mm ± 2.9 mm. Registering a pair of Photoneo MotionCam-3D cameras for dynamic
captures resulted in an error of 2.2 mm ± 1.4 mm. These results show that our 3Dcb implementation
provides registration for static and dynamic captures that is sufficiently accurate for clinical use. The
implementation is also robust and can be used with cameras with comparatively low accuracy. In
addition, we provide an extended overview of extrinsic calibration approaches and the application’s
code for completeness and service to fellow researchers.

Keywords: 3D checkerboard; 3D scanning; extrinsic 3D calibration; point cloud registration; testing
and validation platform

1. Introduction

Optical 3D scanning is widely used in medical applications [1–9], and scanning sys-
tems that track patient movement in 3D are becoming ubiquitous. Some of these can
capture the human upper body, in particular the human back, in various postures and
movements such as standing upright, bending forward, and bending sideways. There are
two options for capturing the human back during these postures and movements: Follow
the patient with a single capturing system or use multiple 3D scanning systems. Using a
single capturing system requires a person or actuator to follow the patient’s movement. In
addition, the movement of the system must also be tracked, which requires user interven-
tion, is a complex task, and can result in a loss of accuracy [10–14]. Conversely, the use of
multiple 3D scanning systems allows the patient’s movement to be captured with minimal
user intervention, but this approach requires repeated extrinsic calibration between these
systems, which can be time consuming.

Many authors have proposed solutions for extrinsic calibration. However, most
extrinsic calibration methods are specific to LiDAR systems used in autonomous driving
for long-range measurements. Other methods are specific to LiDAR and color (RGB) mono
camera or color mono and depth camera, require texture, require a camera with high
resolution, require a time-consuming calibration process involving multicapture, and do
not come with implementation details or publicly available code (Table A1 in Appendix A).
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Beltran et al. [15] published a toolbox for automatic calibration of sensor pairs con-
sisting of LiDAR and mono and stereo camera devices in any possible combination. Their
calibration target contains four round holes and four ArUco markers. Yan et al. [16]
published a calibration toolbox for intrinsic and extrinsic LiDAR-camera calibration for au-
tonomous driving vehicles. Their toolbox contains a rich set of sensor calibration methods,
including inertial measurement units (IMUs) and radar. Their calibration board contains
four round holes and a 2D checkerboard pattern. Domhof et al. [17] published an extrinsic
calibration tool to calibrate sensor setups consisting of LiDAR, camera, and radar sensors
with a calibration board with four round holes.

Zhang et al. [18] proposed a two-step method for extrinsic calibration between a sparse
3D LiDAR and a thermal camera. The method involved two steps: Extrinsic calibration
between LiDAR and a visual camera, followed by extrinsic calibration between the visual
camera and the thermal camera. Their 3D checkerboard was derived from work by Rangel
et al. [19] and Skala et al. [20].

None of these solutions is applicable to all scanning methodologies, provides suf-
ficient calibration accuracy with a single capture, includes implementation details, and
has publicly available code. In this paper, we present a simple, robust, and practical 3D
checkerboard, including an algorithm and software, to calibrate different 3D systems with
each other with a single capture. The work by Beltran et al., Yan et al., Domhof et al., Zhang
et al., Rangel et al., and Skala et al. shows the potential of extrinsic calibration using a
calibration target with holes and inspired our 3D checkerboard approach, which can be
used to calibrate diverse methodologies such as structured light (SL) [21,22], active stereo
(AS) [22,23], and time of flight (ToF) [24]. The validation results for the systems used here
are evaluated and compared to classical approaches in the literature.

2. Materials and Methods

The Biomedical Engineering Lab has built a modular quality-validation platform
(DMQV, Figure 1) for 3D scanning consisting of various 3D scanners, 3D cameras, and 3D
scanning methodologies. A Photoneo (Photoneo s.r.o, Bratislava, Slovakia) MotionCam-3D
camera (MotionCam 1; Figure 1A) [21] is used as a reference for static and dynamic captures
because it has an accuracy of <0.3 mm. The platform also contains a DLP LightCrafter
4500 pattern projector from Texas Instruments (Texas Instruments, Dallas, Texas, USA;
Figure 1B) [25] and three monochrome 2D cameras from HIKROBOT (HIKROBOT, Hangzhou,
Zhejiang, China; MV-CA023-10UM; Figure 1C) [26]. The DLP LightCrafter 4500 and 2D
cameras from HIKROBOT combined with TIDA-00254, a structured light machine vision
application from Texas Instruments [22], can capture high-quality 3D images from static
scenes. In combination with BoofCV (Peter Abeles, version 0.41) [23], the system can
capture 3D images from dynamic scenes with stereo and trinocular vision. The platform
also includes two consumer-grade 3D cameras, the Orbbec (Orbbec, Shenzhen Shi, China)
Astra Mini and the Intel (Intel, Santa Clara, California, USA) D415 (Figure 1D), which use
single-shot structured light and active stereo, respectively.

The DMQV has been developed to investigate the minimum key parameters required to
capture the human back shape [27], build models that allow spinal alignment to be estimated
from back shape, and investigate correlations between back shape and spinal alignment.

The Functional Spinal Biomechanics group at ETH used the DMQV platform at the Spi-
raldynamik MedCenter Zurich and an extended version at the Balgrist University Hospital
in Zurich to capture the human back in various postures and movements. The extended
platform (Figure 2, left) includes an additional Photoneo MotionCam-3D (MotionCam 2) to
capture the patient from above during static and dynamic forward bending. The distance
between the patient’s back and MotionCam 1, DLP LightCrafter, and HIKROBOT cameras
was 1.1 m, the distance between the patient’s back and the Orbbec Astra Mini and Intel
D415 was 0.9 m, and the distance between MotionCam 2 and the floor was 2.2 m.
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Figure 1. Modular quality validation platform (DMQV) for 3D scanning with (A) Photoneo 
MotionCam-3D M+ (MotionCam 1), (B) DLP LightCrafter 4500, (C) 2D HIKROBOT cameras, (D) 
Orbbec Astra Mini and Intel D415, and (E) InfiRay Micro III thermal camera. 
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Hospital in Zurich to capture the human back in various postures and movements. The 
extended platform (Figure 2, left) includes an additional Photoneo MotionCam-3D 
(MotionCam 2) to capture the patient from above during static and dynamic forward 
bending. The distance between the patient’s back and MotionCam 1, DLP LightCrafter, and 
HIKROBOT cameras was 1.1 m, the distance between the patient’s back and the Orbbec 
Astra Mini and Intel D415 was 0.9 m, and the distance between MotionCam 2 and the floor 
was 2.2 m. 

 
Figure 2. (Left): Extended DMQV platform with (A) DMQV platform, (B) additional MotionCam-
3D M+ from above (MotionCam 2), (C) 3D checkerboard in 45°, and (D) laptop with software. 
(Right): 3D checkerboard with (A) a plane with holes in the front and (B) a solid plane behind. 

The DMQV platform was enhanced with a 3D checkerboard (Figure 2, right) to 
extrinsically calibrate the systems and to register the captures from the systems with each 
other. The 3Dcb consists of a plane with holes (Figure 2, right, A) arranged in six distinct 
rows and columns, giving 18 holes in total. Our 3D checkerboard was 21 cm × 29.7 cm 
(A4) in size, and each hole was 2 cm × 2 cm. The sizes of the checkerboard and holes can 

Figure 1. Modular quality validation platform (DMQV) for 3D scanning with (A) Photoneo
MotionCam-3D M+ (MotionCam 1), (B) DLP LightCrafter 4500, (C) 2D HIKROBOT cameras,
(D) Orbbec Astra Mini and Intel D415, and (E) InfiRay Micro III thermal camera.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Modular quality validation platform (DMQV) for 3D scanning with (A) Photoneo 
MotionCam-3D M+ (MotionCam 1), (B) DLP LightCrafter 4500, (C) 2D HIKROBOT cameras, (D) 
Orbbec Astra Mini and Intel D415, and (E) InfiRay Micro III thermal camera. 

The Functional Spinal Biomechanics group at ETH used the DMQV platform at the 
Spiraldynamik MedCenter Zurich and an extended version at the Balgrist University 
Hospital in Zurich to capture the human back in various postures and movements. The 
extended platform (Figure 2, left) includes an additional Photoneo MotionCam-3D 
(MotionCam 2) to capture the patient from above during static and dynamic forward 
bending. The distance between the patient’s back and MotionCam 1, DLP LightCrafter, and 
HIKROBOT cameras was 1.1 m, the distance between the patient’s back and the Orbbec 
Astra Mini and Intel D415 was 0.9 m, and the distance between MotionCam 2 and the floor 
was 2.2 m. 

 
Figure 2. (Left): Extended DMQV platform with (A) DMQV platform, (B) additional MotionCam-
3D M+ from above (MotionCam 2), (C) 3D checkerboard in 45°, and (D) laptop with software. 
(Right): 3D checkerboard with (A) a plane with holes in the front and (B) a solid plane behind. 

The DMQV platform was enhanced with a 3D checkerboard (Figure 2, right) to 
extrinsically calibrate the systems and to register the captures from the systems with each 
other. The 3Dcb consists of a plane with holes (Figure 2, right, A) arranged in six distinct 
rows and columns, giving 18 holes in total. Our 3D checkerboard was 21 cm × 29.7 cm 
(A4) in size, and each hole was 2 cm × 2 cm. The sizes of the checkerboard and holes can 

Figure 2. (Left): Extended DMQV platform with (A) DMQV platform, (B) additional MotionCam-3D
M+ from above (MotionCam 2), (C) 3D checkerboard in 45◦, and (D) laptop with software. (Right):
3D checkerboard with (A) a plane with holes in the front and (B) a solid plane behind.

The DMQV platform was enhanced with a 3D checkerboard (Figure 2, right) to
extrinsically calibrate the systems and to register the captures from the systems with each
other. The 3Dcb consists of a plane with holes (Figure 2, right, A) arranged in six distinct
rows and columns, giving 18 holes in total. Our 3D checkerboard was 21 cm × 29.7 cm
(A4) in size, and each hole was 2 cm × 2 cm. The sizes of the checkerboard and holes
can be scaled according to the intended application, the distance between the camera and
the checkerboard, and the quality of the systems in use. Low-quality systems require a
larger checkerboard and larger holes. Situated 10 cm behind the plane with holes is another
completely solid plane (Figure 2, right, B). Some systems, such as the Intel D415, tend to
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smooth over the holes when the pattern projected by the inbuilt projector is not visible in
the stereo camera pair; the second plane reflects the pattern, and thus the holes are detected
more robustly.

The 3D captures of the 3Dcb from each camera are evaluated in pairs (Algorithm 1,
Figure 3): First, the background is cropped by using a rough estimate of the distance be-
tween the 3Dcb and the camera. Then a plane is fitted (pcfitplane in MATLAB; MathWorks,
Natick, Massachusetts, USA, version R2021b), which keeps only the points from the plane
of the 3Dcb with the holes; all points outside of the fitted plane are removed, including the
points from the solid plane behind the holes. A principal component analysis (pca in MAT-
LAB) is then performed to align the larger dimension of the 3Dcb to the X-axis and project
it into 2D. Next, the projection of the 3Dcb is rasterized with a regular grid, i.e., with a reso-
lution of 3 mm, and labeled with 1 for hole, no nearest neighbor (findNearestNeighbors in
MATLAB) found within the resolution, and 0 for board. This binary image is then checked
for connected components (bwconncomp in MATLAB), which detects all holes. The median
(median in MATLAB) is then calculated for both X and Y coordinates for all components.
The median points of all holes are sorted (sort in MATLAB) in X and Y directions (Figure 4,
left) to detect the arrangement and orientation of the 3Dcb. The medians are then trans-
formed back into the 3D space using the inverse PCA transform. By exploiting the known
arrangement and orientation of the median points, a rigid transformation is estimated
(estimateGeometricTransform3D in MATLAB) between pairwise system captures. The esti-
mated rigid transformation can then be applied directly to the captures from each system to
transform the point cloud into the coordinate system of all other systems (Figure 4, right).

Algorithm 1. MATLAB pseudocode to calculate the rigid transformation between two 3D
scanning systems from a pair of 3D checkerboard captures.

Pc2 %point cloud from capture of 3Dcb from system 2
pc1_ref %point cloud from system 1 (reference coordinate system)
function Checkerboards3d_estimateT(pc2, pc1_ref)

% remove background
pc2_noBackground = abs(pc2-distEstimation) <= eps
pc1_noBackground = abs(pc1_ref-distEstimation) <= eps
for pc = pc2_noBackground, pc1_noBackground do

% fit plane, do PCA to transform from 3D into 2D
planeModel = pcfitplane(pc)
[pcaPlane,coeff,mu] = pca(planeModel)

% create regular binary grid
for [x,y] = min(pcaPlane):resolution:max(pcaPlane)
point_nn = findNearestNeighbors(pcaPlane, [x,y], 1)
if abs(point_nn-[x,y])>resolution
zGrid(x,y) = 1
end if
end for

% detect connected components (holes)
CC = bwconncomp(zGrid)

% calculate median coordinates of holes, sort them and
% use inverse PCA to transform back into 3D

Median_cc = median(CC)
holeMedians = sort(Median_cc)
holeMedians3D = holeMedians * transpose(coeff) + mu
end for

% estimate the geometric transformation between hole medians from both checkerboards
tFormEst = estimateGeometricTransform3D(holeMedians3D_2, holeMedians3D_1,’rigid’)
return tFormEst
end function
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Figure 4. (Left): Binary 2D projection (blue points) of a 3Dcb capture with sorted (colored arrows)
hole medians (red points). (Right): Registered 3D checkerboards from two Photoneo MotionCam-3Ds
(green and red) after applying the estimated geometric transformation.

The DMQV platform, including the 3Dcb, was used to capture static standing upright
and static and dynamic bending forward and sideways at the Spiraldynamik Med Center
Zurich on 72 patients (mean age 54 ± 16 years). The patients attended the medical center
with a diverse spectrum of spinal disorders, including back pain, limited range of mobility,
or simply for a routine checkup. The extended platform version was used at the Balgrist
University Hospital in Zurich on 22 patients who attended with idiopathic scoliosis (mean
age 18 ± 4 years). The height of the DMQV platform was adjusted for each patient to
optimize the field of view. Therefore, captures of the 3Dcb in the vertical position (0◦) and
at 45◦ were taken from all systems after each patient. These 3Dcb captures were used to
register the systems to each other with all 94 patients. Three use cases were evaluated
(Table 1): Use Case 1 registers captures from left and right camera pairs for static standing
upright (Figure 5a), Use Case 2 registers static standing upright captures to its reference
capture (Figure 5c), and Use Case 3 registers captures from above and behind for dynamic
forward bending (Figure 5d).
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Figure 5. Use Case 1: (a) Example of registration of left (red) and right (green) Orbbec Astra Mini
camera pair. (b) Example of the same registration (colored, blue) with overlapping region (black
border) of left (red) and right (green) camera pair. Use Case 2: (c) Example of registration of TIDA-
00254 (colored) to its reference from Photoneo MotionCam-3D (textured). Use Case 3: (d) Example
of registration of the human back surface captured from above (green) and behind (red) with the
Photoneo MotionCam-3D.

Table 1. Use cases evaluated in this paper.

Use Case Posture–Movement Systems

1: Register captures from left and right camera pairs Static standing upright 2× Orbbec Astra, 2× Intel D415

2: Register captures to its reference capture Static standing upright TIDA-00254, BoofCV, 2× Orbbec Astra,
2× Intel D415, Photoneo MotionCam-3D

3: Register captures from above and behind Dynamic forward bending 2× Photoneo MotionCam-3D

The Photoneo MotionCam-3D uses structured light [21]; therefore, the captures from
MotionCam 1 and MotionCam 2 for dynamic forward bending (Use Case 3) must be made
sequentially. To reduce the delay between the captures, a hardware trigger was used to
daisy-chain the two cameras. An iterative closest point (ICP) optimization was performed
for the overlapping region after the 3Dcb registration to correct for the remaining delay
between the captures.

The metrics used to assess the quality of registration are the root mean square error
(RMSE) and standard deviation (SD). The RMSE and SD are calculated using the nearest
neighbors of all points for the overlapping region between the captures from the different
systems. The overlapping region was defined as follows: a point p1 from system 1 overlaps
if there is at least one point p2 from system 2 within a specified radius ρ, i.e., 6 mm, around
the surface normal n1 at that point: |n1 × (p2 − p1)| < ρ, where p2 − p1 gives a vector
pointing from p2 to p1, the cross product with n1 gives a vector that is orthogonal to n1
(definition of the cross product), and taking the norm of this resulting vector gives the
distance between point p2 and p1 orthogonal to the normal vector n1 at point p1.

3. Results

Use Case 1: Register captures from left and right camera pairs for static standing upright.
The median RMSE for the overlapping region at a distance of 0.9 m for the left and

right Orbbec Astra Mini camera pair (Figure 5b) after registration was 3.1 mm (Figure 6,
left). The median SD was 1.9 mm. The median RMSE for the overlapping region at a
distance of 0.9 m for the left and right Intel D415 camera pair after registration was 3.6 mm
(Figure 6, right). The median SD was 2.2 mm.
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Figure 6. RMSE and SD for overlapping region at a distance of 0.9 m after registration for left and
right camera pair for standing upright (Use Case 1). (Left image): Orbbec Astra Mini; (Right image):
Intel D415.

Use Case 2: Register static standing upright captures to its reference capture.
The median RMSE and SD for the overlapping region at distances between 0.9 m and

1.1 m for the captures from all systems and the MotionCam 1 as reference (Figure 5c) after
registration (Figure 7) are shown in Table 2.
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Figure 7. RMSE (left image) and SD (right image) for the overlapping region at distances between
0.9 m and 1.1 m after registration against its reference capture from MotionCam 1 for standing upright
(Use Case 2); For MotionCam 1 (MC 1), TIDA-00254, BoofCV, Orbbec Astra Mini and Intel D415.

Table 2. Median RMSE (median SD) for the overlapping region at distances between 0.9 m and 1.1 m
for all systems against its reference.

MotionCam 1 TIDA-00254 BoofCV 2× Orbbec Astra Mini 2× Intel D415

0 mm (0.2 mm) 0.02 mm (2.9 mm) 0.1 mm (2.1 mm) 1.5 mm (4.0 mm) 1.7 mm (3.9 mm)
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Use Case 3: Register captures from above and behind for dynamic forward bending.
The median RMSE for the overlapping regions at a distance of 1.1 m (Figure 5d) for

the camera pair above (MotionCam 2) and behind (MotionCam 1) after registration was
6.9 mm (Figure 8, left). The median SD was 1.7 mm. An additional ICP registration for the
overlapping region after the 3Dcb registration to correct for the delay between the captures
from cameras 1 and 2 resulted in a median RMSE for the overlapping regions of 2.0 mm
and a median SD of 1.4 mm (Figure 8, right).
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Figure 8. RMSE and SD for overlapping regions at a distance of 1.1 m after registration of above
(MotionCam 2) and behind (MotionCam 1) camera pair for dynamic forward bending (Use Case 3).
(Left image): without ICP; (Right image): with ICP.

4. Discussion

The median RMSE of 0 mm and the median SD of 0.2 mm for the overlapping region
for the captures from the MotionCam 1 with itself as reference (Use Case 2) show that the
3D checkerboard leads to an estimation of a geometric transformation that is sufficiently
accurate for clinical use. The higher RMSE and SD values of TIDA-00254, Orbbec Astra
Mini, and Intel D415 reflect the accuracy of these systems. The RMSE and SD values are
similar to the accuracy values stated by the manufacturers (Table 3), which is to be expected.
The Intel D415 in particular tends to smooth out holes, but this is mitigated by the solid
plane behind.

Table 3. Systems evaluated in this paper with methodology (structured light—SL; active stereo—AS)
used, and resolution and accuracy stated by the manufacturer.

System Methodology Resolution Accuracy

Photoneo MotionCam-3D M+ SL 1680 × 1200 and 1120 × 800 error <0.3 mm at 0.9 m
TIDA-00254 SL 912 × 1140 and 1920 × 1200 error ~1 mm at 1 m
BoofCV AS 912 × 1140 and 1920 × 1200 error ~1 mm at 1 m
Intel D415 AS 1280 × 720 error <2% up to 2 m
Orbbec Astra Mini SL 640 × 480 error <3 mm at 1 m

Furthermore, interference between these systems required that the captures be made
sequentially, within a few seconds, and therefore involuntary movements such as swaying
and breathing are included in the error values. Moreover, the voluntary movement between
captures increases the error values, especially for dynamic bending (Use Case 3). The ICP
registration reduced the median error value to 2.0 mm. Furthermore, the angle between
MotionCam 2 and MotionCam 1 was 90◦, so the 3Dcb was captured at 45◦, and the
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overlapping area of the human back was also largely captured by both cameras with an
incidence angle of 45◦.

The literature on the registration of 3D captures and considerations for practical appli-
cations mostly focuses on camera–LiDAR calibration, covers only parts of our proposed
solution, and mostly presents only results. Beltran et al. [15] used their calibration toolbox
with a 1.4 m wide calibration target with four round holes. The resulting mean error for
monocular–LiDAR calibration using 30 frames of three calibration target poses was 8.2 mm.
Unfortunately, they do not state error values for their real test environment for stereo–stereo
calibration. Our practical application showed error values between 0 mm and 3.6 mm for a
single target pose with a single frame. We only used distances of around 1.1 m, whereas
they used distances up to 6 m. The question arises: Which calibration target and algorithm
perform better for which systems and target distances. Since our application is limited to
distances around 1.1 m, future work could investigate the performance of our proposed
solution at larger distances.

Yan et al. [16] used their calibration toolbox with a 1.2 m wide calibration board with
four round holes and a 2D checkerboard pattern. Their toolbox contains a rich set of various
sensor calibration methods but is specific to autonomous driving, such as camera–LiDAR
calibration. Furthermore, they do not state error values for real test environments.

Domhof et al. [17] used their extrinsic calibration tool with a 1.5 m wide calibration
board with four round holes. The resulting mean error for stereo–LiDAR calibration using
29 target locations within approximately 5 m was 15 mm. Stereo–stereo calibration was
not investigated.

Zhang et al. [18] used their method for extrinsic calibration with a 3D checkerboard
approximately 56 cm wide and consisting of 44 round holes. Low-cost cameras such
as the Intel D415 and Orbbec Astra would have failed to detect all holes with a single
capture. Furthermore, Zhang et al. suggest collecting more than 40 image pairs with the
checkerboard in various positions, angles, and distances. Stereo–stereo calibration was not
investigated, no error values were reported, and no implementation details or public code
were provided.

The work by Beltran et al. [15], Yan et al. [16], Domhof et al. [17], Zhang et al. [18],
Rangel et al. [19], and Skala et al. [20] demonstrates the potential of extrinsic calibration
using a calibration target with holes. Unfortunately, none of their work was directly
applicable to our specific setup, but it inspired our 3D checkerboard approach. Repeated
calibration was necessary because the platform was adjusted to each patient, and the low-
cost systems required a very robust method. Therefore, we implemented a robust approach
requiring only a single capture. The work by Zhang et al. [18], Rangel et al. [19], Skala
et al. [20], and our own research show that our 3D checkerboard and registration approach
is applicable to further modalities, such as time of flight, and can even be extended to
thermal cameras (Figure 1). This will be the focus of future work.

The holes of the proposed 3Dcb are arranged in a regular pattern on a single plane.
The question arises whether a unique but irregular cubic arrangement could improve the
estimated 3D transformation. The holes of the proposed 3Dcb are square. We investigated
whether round holes would lead to better results; this was not the case, but the shape of
the holes could be further investigated.

We also used multiple 3Dcb captures with different positions and locations of the
checkerboard, but we did not find significant improvement over a single capture. The
comparison between multiple captures and single capture could be further investigated
and quantified.

5. Conclusions

The Biomedical Engineering Lab has built a modular quality validation platform for
3D scanning (DMQV) consisting of various 3D scanners, 3D cameras, and 3D scanning
methodologies, including a 3D checkerboard for extrinsic calibration. The 3D checkerboard
extrinsic calibration can be used to register 3D captures between different systems, to fuse
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these captures, and to compare various quality validation parameters between all systems.
The registration of 3D captures with the 3Dcb requires only a single additional capture.
The registration approach does not require texture and is therefore applicable to further
modalities such as time of flight. The DMQV has been tested and validated with two
studies for the systems detailed in Table 3.

The results show that our 3Dcb implementation provides accurate registration and is
robust, simple, fast to use, and generalizable. The median RMSE and median SD of the overlap-
ping regions after the registration of the 3D captures from SL with TIDA (0.02 mm ± 2.9 mm),
Astra Mini (1.5 mm ± 4.0 mm), and Intel D415 (1.7 mm ± 3.9 mm) deviate only a few millime-
ters from the reference capture with the Photoneo MotionCam-3D and reflect the accuracy
values provided by the manufacturers (Table 3). In addition, the 3Dcb registrations for the
fusion of static captures from low-cost camera pairs and dynamic captures from a Photoneo
MotionCam-3D camera pair were achieved with comparable errors.

We provide a complete pipeline for the registration of any 3D scanning methodology,
including the CAD model of the 3Dcb and publicly available code (see Supplementary
Materials) to facilitate further research on this topic. We believe that the integration of our
extrinsic 3D calibration pipline will facilitate the use of setups involving multiple adjustable
3D scanning systems and thereby promote their dissemination in clinical research and
practical applications.

Supplementary Materials: The MATLAB code presented in this study is openly available on GitHub
at https://github.com/mkaisereth/Extrinsic3DCalibration, (accessed on 28 February 2024).
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Appendix A

Table A1. Literature with extrinsic calibration (see Tables A2 and A3 for an extended overview).

Author &
Reference Sensor Type Checkerboard Multicapture or

Single Capture
Texture

Required
Code

Available

J. Beltran [15] LiDAR–camera
(stereo, mono)

Calibration target with
four round holes

andArUco markers
Multicapture No Velo2cam

G. Yan [16] LiDAR–camera
(mono)

Calibration target with
four round holes

andcheckerboard pattern
Multicapture Yes OpenCalib

J. Domhof [17] Radar–camera
(stereo)–LiDAR

Calibration target with
four round holes Multicapture No Multi_sensor_

calibration

J. Zhang [18] LiDAR–camera–
thermal

2D checkerboards and
3D checkerboard Multicapture Yes No

J. Rangel [19] Thermal–RGB-D
camera 3D checkerboard Multicapture Yes No

K. Skala [20] Thermal–RGB-D
camera 3D checkerboard Multicapture Yes No

Proposed

Depth cameras
(Structured
light–active
stereo–ToF)

3D checkerboard Single capture No Extrinsic3D
Calibration

Table A2. Extended overview of literature with extrinsic calibration with publicly available code.
Columns are author and reference, sensor type, name of toolbox and operating system–platform.

Author and Reference Sensor Type Toolbox Name Operating System–Platform

C. Guindel [28] LiDAR–stereo Velo2cam ROS
J. Beltran [15] LiDAR–camera (stereo, mono) Velo2cam ROS
R. Unnikrishnan [29] Camera–LiDAR LCCT MATLAB
A. Geiger [30] LiDAR–ToF–Camera (stereo) LIBCBDETECT MATLAB
G. Yan [31] LiDAR–camera (mono) OpenCalib C++
G. Yan [16] LiDAR–camera (mono) OpenCalib C++
J. Domhof [17] Radar–camera (stereo)–LiDAR Multi_sensor_calibration ROS
J. K. Huang [32] LiDAR–camera (mono) extrinsic_lidar_camera_calibration MATLAB
A. Dhall [33] LiDAR–camera (mono, stereo) lidar_camera_calibration ROS
M. Velas [34] LiDAR–RGB camera (mono) but_calibration_camera_velodyne ROS
L. Yin [35] LiDAR–camera (mono) multimodal_data_studio MATLAB
P. C. Su [36] RGB-D cameras RGBD_CameraNetwork_Calibration C++
Proposed
(Kaiser et al.)

Depth cameras (Structured
light–active stereo–ToF) Extrinsic3DCalibration MATLAB

Table A3. Extended overview of literature with extrinsic calibration with author and reference, sensor
type, checkerboard type or scene, features used for correspondence, whether the approach requires
multiple captures or a single capture, publication type, whether the approach requires texture and
whether the approach is specific for autonomous driving. Legend: Multicapture (MC), single capture
(SC), multitarget (MT), journal (J), conference (C), online (O), no explicit information (X), and not
applicable (n.a.).

Author and
Reference Sensor Type Checkerboard or

Scene Features
Multicapture

or
Single Capture

Publication
Type

Texture
Required

Autonomous
Driving

M. Lindner [37] PMD ToF–RGB
camera (mono) 2D checkerboard Plane MC C Yes X

S. Fuchs [38] ToF 2D checkerboard Plane
(dark–bright) MC C Yes X
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Table A3. Cont.

Author and
Reference Sensor Type Checkerboard or

Scene Features
Multicapture

or
Single Capture

Publication
Type

Texture
Required

Autonomous
Driving

J. Zhu [39] ToF–passive
stereo 2D checkerboard Plane

(dark–bright) MC C Yes X

H. Zou [40] Laser profilers Spheres Spheres MC J No No
J. Schmidt [41] ToF Scene Point corre-

spondence MC C Intensity X

H. Lee [42] LiDAR Planar objects from
Scene

Plane corre-
spondence MC J No Yes

S. Chen [43] LiDAR Spheres

Sphere center
and

corresponding
points

MC J No Yes

C. Guindel [28] LiDAR–stereo
Calibration target
with four round

holes

Plane, Circles
and point cor-
respondence

MC C No Yes

J. Beltran [15] LiDAR–camera
(stereo–mono)

Calibration target
with four round
holes and ArUco

markers

Plane, Circles,
point corre-

spondence and
ArUco markers

MC J No–Yes Yes

Y. M. Kim [44] ToF–camera
(stereo) 2D checkerboard Corners MC C Yes No

D. Scaramuzza
[45]

LiDAR–camera
(mono) Scene Natural

features MC C Yes Yes

R. Unnikrishnan
[29] Camera–LiDAR 2D checkerboard Corners and

Plane MC O Yes Yes

Q. Zhang [46] Camera–LiDAR 2D checkerboard Plane MC C Yes Yes

A. Geiger [30] LiDAR–ToF–
Camera (stereo)

Multiple 2D
checkerboards

Corners and
Planes

SC
(Multitarget) C Yes X

L. Zhou [47] Stereo–LiDAR 2D checkerboard
Plane and Line

correspon-
dences

MC C Yes Yes

Q. Wang [48] LiDAR–camera 3x 2D
checkerboard

Planes and
Corners MC J Yes Yes

S. Verma [49] Camera
(mono)–LiDAR 2D checkerboard Planes and

Corners MC C Yes Yes

J. Ou [50] LiDAR–camera
(mono, stereo) 2D checkerboard

Corners,
intensity and

Plane
MC J Yes Yes

X. Gong [51] LiDAR–camera Trihedron Planes MC J Yes Yes

G. Yan [31] LiDAR–camera
(mono)

Calibration target
with four round

holes and
checkerboard

pattern

Circles and
Corners MC O Yes Yes

Y. An [52] LiDAR–camera
(mono) 2D checkerboard Plane and

Corners MC J Yes Yes

S. A. Rodriguez F.
[53]

LiDAR–camera
(mono) Circle Circle MC C Yes Yes

G. Yan [16] LiDAR–camera
(mono)

Calibration target
with four round

holes and
checkerboard

pattern

Circles and
Corners MC J Yes Yes

J. Zhang [18] LiDAR–camera–
thermal

2D checkerboards
and 3D

checkerboard
Corners and

circles MC C Yes Yes

J. Domhof [17] Radar–camera
(stereo)–LiDAR

Calibration target
with four round

holes
Circles MC C No Yes

E. S. Kim [54] LiDAR–camera
(mono) 2D checkerboard Corners and

Plane MC J Yes Yes

Y. Wang [55] LiDAR–camera
(mono) Review n.a. n.a. C n.a. Yes

A. Khurana [56] LiDAR–camera
(mono, stereo) Review n.a. n.a. J n.a. Yes

J. Nie [57] LiDAR–camera
(mono) Review n.a. n.a. C n.a. Yes

D. J. Yeong [58] LiDAR–camera
(mono, stereo) Review n.a. n.a. J n.a. Yes

P. An [59] LiDAR–camera
(mono) 2D checkerboards Corners and

Plane Multitarget J Yes Yes

J. Persic [60] LiDAR–Radar
Triangular

trihedralcorner
reflector

Triangle and
Plane MC C No Yes

J. K. Huang [32] LiDAR–camera
(mono)

Planar square
targets

Plane and
Corners MC J Yes Yes
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Table A3. Cont.

Author and
Reference Sensor Type Checkerboard or

Scene Features
Multicapture

or
Single Capture

Publication
Type

Texture
Required

Autonomous
Driving

A. Dhall [33] LiDAR–camera
(mono, stereo)

Planar boards with
ArUco tags

Corners and
Edges MC O Yes Yes

M. Velas [34] LiDAR–RGB
camera (mono)

Calibration target
with four round

holes

Circles and
edges SC C Yes Yes

L. Yin [35] LiDAR–camera
(mono) 2D checkerboard Corners and

plane MC J Yes Yes

H. Liu [61] RGB-D cameras Spheres Sphere center MC J Yes X

A. Perez-Yus [62]
RGB

camera–Depth
camera

Line observations Lines MC J Yes Yes

C. Daniel
Herrera [63]

RGB
camera–Depth

camera
2D checkerboard Corners and

Plane MC J Yes No

J. Chaochuan
[64] RGB-D cameras Calibration tower Circles MC J Yes No

Y. C. Kwon [65] RGB-D cameras Circles and spheres Circles MC J Yes No

Z. Wu [66]
RGB

camera–Depth
camera

3D Checkerboard Corners MC C Yes No

R. Avetisyan [67] RGB-D cameras 2D Checkerboard
and Markers

Corners and
Markers MC C Yes No

R. S. Pahwa [68] PMD depth
camera (ToF) 2D checkerboard Corners and

Plane MC C Yes No

D. S. Ly [69] Mono cameras Scene Lines MC J Yes No

W. Li [70]
3D

scanner–optical
tracker

3D benchmark Point set (ICP) MC J No No

M. Ruan [71] Depth cameras Spherical target Shere center MC C No No
N. Eichler [72] Depth cameras human motion Skeletal joints MC J No No

B. S. Park [73] RGB-D cameras 3D Charuco board QR code and
feature points MC J Yes No

J. Guan [74] Mono cameras Spheres Sphere center MC J Yes No
P. C. Su [36] RGB-D cameras Spheres Sphere center MC J Yes No

J. Rangel [19] Thermal–RGB-D
camera 3D checkerboard Circular holes MC C Yes No

K. Skala [20] Thermal–RGB-D
camera 3D checkerboard Rectangular

holes MC J Yes No

Proposed
(Kaiser et al.)

Depth cameras
(Structured
light–active
stereo–ToF)

3D checkerboard
Rectangular

holes and
Plane

SC J No No
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