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Abstract: Glutamine and its metabolite glutamate serve as the main energy substrates for immune
cells, and their plasma levels drop during severe illness. Therefore, glutamine supplementation in
the critical care setting has been advocated. However, little is known about glutamine metabolism in
severely but not critically ill medical patients. We investigated the prognostic impact of glutamine
metabolism in a secondary analysis of the Effect of Early Nutritional Support on Frailty, Functional
Outcomes, and Recovery of Malnourished Medical Inpatients Trial (EFFORT), a randomized controlled trial
comparing individualized nutritional support to usual care in patients at nutritional risk. Among
234 patients with available measurements, low plasma levels of glutamate were independently
associated with 30-day mortality (adjusted HR 2.35 [95% CI 1.18–4.67, p = 0.015]). The impact on
mortality remained consistent long-term for up to 5 years. No significant association was found for
circulating glutamine levels and short- or long-term mortality. There was no association of glutamate
nor glutamine with malnutrition parameters or with the effectiveness of nutritional support. This
secondary analysis found glutamate to be independently prognostic among medical inpatients at
nutritional risk but poorly associated with the effectiveness of nutritional support. In contrast to ICU
studies, we found no association between glutamine and clinical outcome.

Keywords: malnutrition; polymorbid patient; individualized nutrition support; glutamine;
glutamate; biomarker

1. Introduction

Glutamine is a non-essential amino acid, which is vital for several key stress response
pathways in critical illness [1,2]. Under certain conditions, glutamine becomes essential for
the maintenance of metabolic functions in the context of glutathione synthesis, nitrogen
exchange, and purine and pyrimidine productions and is therefore considered a condi-
tionally essential amino acid. Additionally, glutamine serves as a main energy substrate
for immune cells and cells of the gut-associated lymphatic tissue. Converted to glutamate
and α-ketoglutarate, glutamine can boost energy production across diverse cell types via
the Krebs cycle [3]. During a catabolic state or acute disease, some immune cells, such
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as lymphocytes and macrophages, consume even more glutamine than glucose [4,5]. In
contrast, muscle cells, which are the main sites of glutamine synthesis, show reduced
synthesis activity of the latter due to proteolysis, atrophy, and hypermetabolism. As a
result, blood plasma glutamine levels are found to be depleted, which exacerbates the
catabolic state [3].

Low plasma glutamine concentration is associated with increased mortality and mor-
bidity [2,6–8]. Therefore, glutamine administration has been studied in various clinical
settings, such as cancer and critical illness [9–11], or in patients suffering from burn in-
juries [12]. Glutamine supplementation was thereafter recommended for critically ill pa-
tients in the 2019 nutritional guidelines from the European Society for Clinical Nutrition and
Metabolism [13]. However, a recent large, double-blind, randomized, placebo-controlled
trial of 1209 burned patients showed no effect of glutamine supplementation on the time to
discharge alive from the hospital [12]. Thus, there is still an ongoing controversy about the
effectiveness of glutamine supplementation in the setting of critical illness.

Disease-related malnutrition (DRM) is a growing health concern among elderly and
polymorbid medical inpatients, a condition that is strongly associated with increased
mortality, complications, and reduced quality of life [14–16]. However, recent large tri-
als [17,18] and a meta-analysis [19] have shown that nutritional support is an effective and
cost-efficient [20] intervention to lower the risk of worse clinical outcomes [17–19,21,22].
Despite the overall beneficial effect of nutritional support, there are subgroups with certain
clinical conditions, such as high inflammation [23], or severely ill patient populations [24]
that show less benefit from nutritional treatment [23–25]. In fact, several studies have
demonstrated that the acute-phase response and individual stress metabolism influence the
way nutritional support affects the body [26,27]. In contrast to these findings, patients with
impaired muscle strength [28] or advanced kidney failure [29] showed a more favorable
response to nutritional support in medical inpatients [29]. A better understanding of the
pathophysiology and DRM phenotype is key to improving nutritional strategies and will
enable a more individualized approach. In addition to the current approach of selection
for nutritional intervention using the nutritional history of patients, including changes in
appetite and weight loss [19], other factors, such as severity of inflammation [23], specific
comorbidities, and specific blood markers [30], might be helpful.

Despite thorough research on glutamine supplementation in the intensive care setting,
little is known about glutamine metabolism in patients with severe but not critical illnesses,
such as medical inpatients with acute disease. Herein, our aim was to investigate the roles
of glutamine and its metabolite glutamate in predicting clinical outcomes regarding the
response to nutritional support in a previous randomized controlled trial.

2. Materials and Methods
2.1. Study Design and Participants

This was a secondary analysis of the EFFORT trial, which is a pragmatic, investigator-
initiated, open-label, non-commercial, multicenter, randomized controlled trial that was
undertaken in eight Swiss hospitals. The participating centers were either secondary or
tertiary care hospitals, such as the University Clinic in Aarau, the University Hospital
in Bern, the Cantonal hospitals in Lucerne, Solothurn, St. Gallen, Muensterlingen, and
Baselland, and the regional hospital in Lachen. Hospitalized patients were screened using
the Nutritional Risk Screening 2002 (NRS), which is a validated risk screening tool for
malnutrition. This assesses the patient’s nutritional status (based on body mass index
(BMI) and weight loss, as well as food intake) and disease severity. Patients received
points from 0 to 3, depending on each risk predictor, and received an additional point if
they were aged over 70 years. The inclusion criteria were defined as a minimum age of
18 years, an NRS total score of 3 points or greater, and an expected length of stay in the
hospital for at least 5 days. Patients who were willing to give informed consent within
48 h of hospital admission were included. Patients were enrolled between 1 April 2014 and
28 February 2018. Exclusion criteria were an initial hospitalization in intensive care units
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or surgical wards; inability to ingest oral nutrition; already receiving nutritional support at
admission; having a terminal condition; being admitted to hospital because of anorexia
nervosa, acute pancreatitis, acute liver failure, cystic fibrosis, or stem cell transplantation;
received gastric bypass surgery; received contraindications for nutritional support; and
being previously included in the trial. The study protocol was approved by the Ethics
Committee of Northwest and Central Switzerland (EKNZ) in January 2014 (registration
ID 2014_001).

2.2. Randomization and Procedures

Patients were randomly assigned (1:1) to a control or intervention group. Nutri-
tional support was initiated in the intervention group based on an individual nutritional
treatment algorithm within 48 h after hospital admission. Control group patients re-
ceived usual hospital food without further nutritional support or dietary counseling.
They were allowed to eat according to their appetite. Participants and investigators were
aware of group assignments at any time. However, structured telephone interviews
to assess clinical outcomes were conducted by trained and blinded study nurses after
discharge. Patients in the intervention group received individual nutrition therapy from
trained, registered dietitians to reach protein and caloric targets. The daily protein target
was set at 1.2–1.5 g/kg of bodyweight. A lower protein intake goal was defined for
patients with acute renal failure (0.8 g/kg of bodyweight). The weight-adjusted Harris–
Benedict equation was used to predict caloric requirements [31]. Trained, registered
dietitians defined individualized goals for each patient. This plan was initially based on
oral nutrition provided by the hospital kitchen (including food adjustment according to
patient preferences, food fortification, such as enrichment of hospital food by adding
protein powder, and snacks between meals) and oral nutritional supplements. A further
increase in nutritional support to enteral or parenteral feeding was recommended if
at least 75% of the daily caloric and protein targets could not be reached through oral
feeding within 5 days. The nutritional algorithm used during the trial can be found in
the original publication [17]. Nutritional intake was reassessed every 24–48 h throughout
the hospital stay. Upon hospital discharge, the intervention was discontinued.

2.3. Analysis of Blood Biomarkers

Upon study inclusion, blood samples were collected, immediately processed, frozen
in aliquots, and stored under a temperature controlled at −80 ◦C until further analysis.
Admission plasma metabolites were analyzed from February to April 2019 by liquid chro-
matography coupled to tandem mass spectrometry (LC-MS/MS). An Ultimate 3000 UHPLC
(Thermos Fisher, San Jose, CA, USA) system coupled to a Sciex QTRAP 5500 linear ion-
trap quadrupole mass spectrometer (Sciex, Darmstadt, Germany) and the AbsoluteIDQ®

p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) were used [32–34]. An inter-
laboratory assessment of this commercially available kit for targeted metabolomics showed
the reliability of the metabolomics assay [35–37]. Measurements without a detectable signal
for glutamine or glutamate were considered incorrect and were excluded in our analysis.
Finally, we analyzed a total number of 234 glutamine and glutamate measurements. The
glutamate to glutamine ratio was calculated as a surrogate to estimate the consumption
of glutamine.

2.4. Outcomes

Our primary endpoint was defined as all-cause, short-term mortality measured at
30 days. The secondary endpoints were chosen as mid- and long-term mortality (at
180 days, 1 year, 2 years, 3 years, and 5 years); adverse events within 30 days; admission
to the intensive care unit from the medical ward; non-elective hospital readmission after
discharge; major complications, such as respiratory failure, a major cardiovascular event
(i.e., stroke, intracranial bleeding, cardiac arrest, myocardial infarction, or pulmonary
embolism), acute renal failure, and gastro-intestinal failure (i.e., hemorrhage, intestinal
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perforation, acute pancreatitis); decline in the functional status of more than 10% (measured
by Barthel index); and total length of hospital stay and incidence of falls during the 180-day
follow-up period. Additionally, nutritional outcomes were set as secondary endpoints, i.e.,
mean caloric and protein intakes per kg of bodyweight and achieving caloric and protein
targets. Follow-up interviews for outcome assessment were performed at days 30 and 180
via phone calls. If necessary, family members or family physicians were contacted to verify
the survival.

2.5. Statistical Analysis

STATA 17.0 was used for statistical analysis. Statistical significance was tested at
95% confidence intervals (CI), corresponding to a p-value of 0.05. Continuous variables
were expressed as mean ± standard deviation (SD), and binary and categorical variables
were expressed as the number or count and percentages. The Liu method was used to
calculate the empirical optimal cut-off values for the primary endpoint (30-day mortal-
ity) [38]. Patients in this secondary analysis were stratified into groups based on low or
high glutamine or glutamate levels [39]. The cut-off concentration for glutamine was
calculated to be 595.5 µmol/L, for glutamate, it was 167.5 µmol/L, and for their ratio, it
was 0.28, which we then used to stratify them into high or low groups. A two-samples
t-test was used to compare continuous variables, and Pearson’s chi-squared test was
used for categorical and binary variables. Adjustment for potential confounding and
random imbalances in regression analyses were made, including sex, baseline nutritional
status (NRS total score), C-reactive protein (CRP), randomization group, and Carlson
comorbidity index (CCI).

Associations between the metabolite levels and malnutrition parameters as well as
secondary clinical outcomes were assessed using logistic regression models for the binary
outcome, and for continuous outcomes, we used linear regression models, reported as
the odds ratio (OR) and coefficient, respectively. Cox regression models were calculated
for time-to-event analysis, with recorded hazard ratios (HR). The HR was calculated for
all mortality endpoints (30 and 180 days and 1, 2, 3, and 5 years). Kaplan–Meier curves
were used for the graphical display of the probability of all-cause mortality within 30 and
180 days.

Additionally, we investigated the response to nutritional therapy by comparing
the hazards of mortality in the intervention vs. control groups, stratified by high
versus low glutamine or glutamate plasma levels at admission. In all our analyses,
the intention-to-treat principle was used. Limits to detect outliers were calculated by
mean ±3 standard deviations of the sample (z-score method), and sensitivity analysis
was performed for metabolites by comparing statistical results for data with and
without outliers.

3. Results
3.1. Patient Population

We had full clinical and metabolomic data on 234 of 2028 patients (11.5%) that were
included in our analyses (Figure 1). Of these, 159 patients had low plasma glutamine
levels, and 160 patients had low plasma glutamate levels. Overall, the mean age of
our cohort was 73.6 years (+/− 13.3 years), and 57.7% of patients were male. Overall,
patients had a high burden of comorbidities, indicated by a CCI of 6.4. Most baseline
characteristics, such as risk of malnutrition indicated by the NRS total score, were equally
distributed. However, in the low-glutamine group, cancer as a main diagnosis was more
prominent (58 [36.5%] vs. 16 [21.3%], p = 0.020), whereas diabetes as a comorbidity
was less often observed (Table 1). On the other hand, stratified by high versus low
glutamate, all baseline characteristics were equally distributed without any imbalances
(Supplemental Table S1).
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Figure 1. Study flow chart of the secondary analysis based on Schuetz et al., 2019 [17]; IC,
informed consent.

3.2. Association of Glutamine and Glutamate with Nutritional Parameters and Inflammation

In the next step, we investigated the association of glutamine and glutamate levels
and their ratio with different nutritional parameters, particularly the NRS total score, its
components, the BMI, or CRP. Data for glutamine are presented below in Table 2. We did
not find any significant results within the subgroups. Neither glutamine nor glutamate
or their ratio showed any significant association with the NRS total score, its components,
or baseline inflammation. The results remained consistent even in sensitivity analyses
without outliners (Supplementary Tables S3 and S4). Data for glutamate can be found in
the Supplementary Materials (Supplementary Table S2).

3.3. Prognostic Value of Low Glutamine or Low Glutamate to Predict Clinical Outcomes

Next, the associations of glutamine and glutamate with mortality and other predefined
clinical outcomes were assessed (Table 3). We found no significant differences in short- or
long-term mortality in patients with low versus high glutamine plasma concentrations.
However, patients with low glutamate plasma concentrations had more than a doubling
in 30-day mortality, resulting in an unadjusted HR of 2.40 (95% CI = 1.21–4.75, p = 0.012).
These results remained robust in an adjusted model for CCI, CRP, the NRS total score,
sex, and the randomization group, with an HR of 2.35 (95% CI = 1.18–4.67, p = 0.015).
Additionally, the results stayed consistent for long-term mortality at 180 days up to 5 years
(adjusted HR: 1.67, 95% CI: 1.06–2.63, and p = 0.028, respectively). Figure 2 visualizes the
survival probability in Kaplan–Meier curves for 30- and 180-day all-cause mortality among
the population with high and low glutamine or glutamate.

For secondary clinical outcomes, we observed similar trends to mortality. While
there was only a little difference between high- and low-glutamine groups, we found an
association between low glutamate levels and the composite endpoint of adverse clinical
outcomes within 30 days (adjusted HR: 2.65, 95% CI: 1.39–5.05, p = 0.003), as well as major
complications (adjusted HR: 5.35, 95% CI: 1.21–23.67, p = 0.027). Full results can be found
in Supplemental Tables S5–S9.
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Table 1. Baseline characteristics overall and stratified by high versus low glutamine.

Overall
(n = 234)

Low Glutamine
(n = 159)

High Glutamine
(n = 75) p-Value

Sociodemographic

Male sex 135 (57.7%) 87 (54.7%) 48 (64.0%) 0.18

Mean age in years (SD) 73.6 (13.3) 73.5 (13.6) 73.9 (13) 0.81

Nutritional assessment

Mean body mass index in kg/m2 (SD) 24 (5) 24 (5) 25 (5) 0.32

Mean bodyweight in kg (SD) 69 (15) 68 (15) 71 (14) 0.11

Mean height in cm (SD) 168.1 (8.6) 167.5 (8.6) 169.3 (8.4) 0.15

NRS total score 0.75

3 points 60 (25.6%) 39 (24.5%) 21 (28.0%)

4 points 79 (33.8%) 56 (35.2%) 23 (30.7%)

≥5 points 95 (40.6%) 64 (40.3%) 31 (41.3%)

CRP, day 1, mg/L 84.1 (79.8) 85.1 (78.2) 82.0 (83.4) 0.78

Admission diagnosis

Infection 63 (26.9%) 40 (25.2%) 23 (30.7%) 0.38

Cancer 74 (31.6%) 58 (36.5%) 16 (21.3%) 0.020

Cardiovascular disease 24 (10.3%) 15 (9.4%) 9 (12.0%) 0.55

Frailty 13 (5.6%) 11 (6.9%) 2 (2.7%) 0.19

Lung disease 10 (4.3%) 6 (3.8%) 4 (5.3%) 0.58

Gastrointestinal disease 13 (5.6%) 9 (5.7%) 4 (5.3%) 0.92

Renal disease 15 (6.4%) 9 (5.7%) 6 (8.0%) 0.50

Comorbidity

Charlson Comorbidity Index 6.4 (2.8%) 6.4 (2.9%) 6.3 (2.7%) 0.76

Hypertension 137 (58.5%) 92 (57.9%) 45 (60.0%) 0.76

Malignant disease 110 (47.0%) 77 (48.4%) 33 (44.0%) 0.53

Chronic kidney disease 81 (34.6%) 51 (32.1%) 30 (40.0%) 0.23

Coronary heart disease 54 (23.1%) 36 (22.6%) 18 (24.0%) 0.82

Diabetes mellitus 43 (18.4%) 23 (14.5%) 20 (26.7%) 0.025

Congestive heart failure 45 (19.2%) 33 (20.8%) 12 (16.0%) 0.39

Chronic obstructive pulmonary disease 26 (11.1%) 20 (12.6%) 6 (8.0%) 0.30

Peripheral arterial disease 26 (11.1%) 16 (10.1%) 10 (13.3%) 0.46

Cerebrovascular disease 27 (11.5%) 17 (10.7%) 10 (13.3%) 0.56

Dementia 11 (4.7%) 8 (5.0%) 3 (4.0%) 0.73

Metabolites

Mean plasma glutamine concentration (µmol/L) 522.5 (196.2) 423.4 (130.2) 732.7 (138.3) <0.001

Mean plasma glutamate concentration (µmol/L) 152.10 (110.35) 166.34 (124.38) 121.91 (62.87) 0.004

SD, standard derivation; NRS, nutritional risk screening 2002; CRP, C-reactive protein.

3.4. Association of Glutamine and Glutamate Levels or the Ratio with the Effectiveness of
Nutritional Support

To assess whether the response to nutritional support would differ according to baseline
glutamine or glutamate levels or their ratio, we compared the effects of nutritional support
on 30-day all-cause mortality among patients randomized to intervention versus the control
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group with high and low glutamine and glutamate or their ratio, respectively (Figure 3). The
30-day mortality did not differ in subgroups of patients according to their plasma glutamine and
glutamate levels, resulting in a non-significant interaction analysis (p = 0.771 for high versus low
glutamine, p = 0.897 for high versus low glutamate, and p = 0.321 for glutamate/glutamine ratio).

Table 2. Association of nutritional parameters with a decrease in plasma glutamine levels.

Unadjusted Adjusted *

Glutamine
(decrease of 10 µmol/L)

Coef (95% CI)
p-value

Coef (95% CI)
p-value

Nutritional assessment

Bodyweight (kg) 0.06 (−0.11 to 0.23) p = 0.459 0.06 (−0.11 to 0.24) p = 0.474

Body mass index (kg/m2) 0.13 (−0.38 to 0.64) p = 0.620 0.12 (−0.39 to 0.63) p = 0.640

NRS total score

3 points reference reference

4 points −4.56 (−11.15 to 2.04) p = 0.175 −4.80 (−11.51 to 1.91) p = 0.160

≥5 points −1.45 (−7.77 to 4.87) p = 0.651 −2.47 (−8.96 to 4.01) p = 0.453

CRP, day 1, mg/L 0.00 (−0.03 to 0.03) p = 0.948 −0.01 (−0.08 to 0.05) p = 0.659

NRS score components

Loss of appetite ** −3,99 (−11.66 to 3.67) p = 0.306 −5.82 (−13.80 to 2.15) p = 0.152

Bodyweight loss (kg)

<5% in 3 months reference reference

>5% in 3 months 6.00 (−1.03 to 13.03) p = 0.094 6.07 (−0.99 to 13.14) p = 0.092

>5% in 2 months −3.83 (0.293 to −11.00) p = 0.293 −4.25 (−11.44 to 2.93) p = 0.245

>5% in 1 month −3.94 (−10.52 to 2.64) p = 0.239 −3.55 (−10.18 to 3.07) p = 0.292

Reduced dietary intake **

>75% reference reference

50–75% −5.54 (−14.72 to 3.65) p = 0.236 −5.57 (−14.83 to 3.69) p = 0.237

25–50% −7.27 (−16.00 to 1.47) p = 0.102 −6.95 (−15.83 to 1.92) p = 0.124

<25% −0.14 (−9.77 to 9.49) p = 0.977 −0.26 (−9.98 to 9.47) p = 0.958

Severity of disease

1 reference reference

2 −2.89 (−8.16 to 2.38) p = 0.281 −3.29 (−8.82 to 2.25) p = 0.243

3 −7.04 (−45.16 to 31.09) p = 0.716 −7.69 (−46.53 to 31.14) p = 0.697

Unadjusted and adjusted regression analyses were performed to identify associations of glutamine concentrations
at admission with nutritional parameters. The regression coefficients (95% CI) indicate the change in glutamine
concentration by ten units (10 µmol/L). For binary parameters, patients with the characteristics are compared to patients
without the characteristic. BMI, body mass index; NRS 2002, Nutritional Risk Screening 2002; CRP, C-reactive protein;
CI, confidence interval; Coef, coefficient. * Adjusted for CCI, CRP, sex, and intervention. ** In the week preceding
hospitalization compared to usual appetite and intake.

Table 3. Prognostic values of high vs. low levels of glutamine or glutamate on mortality.

Unadjusted Adjusted *

Short- and Long-Term
Mortality n. of Event (%) n. of Event (%) HR (95% CI) p-Value HR (95% CI) p-Value

30-day all-cause mortality high low
Glutamine 14/75 (19%) 43/159 (27%) 1.50 (0.82 to 2.74) p = 0.189 1.46 (0.79 to 2.69) p = 0.223
Glutamate 10/74 (14%) 47/160 (29%) 2.40 (1.21 to 4.75) p = 0.012 2.35 (1.18 to 4.67) p = 0.015
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Table 3. Cont.

Unadjusted Adjusted *

Short- and Long-Term
Mortality n. of Event (%) n. of Event (%) HR (95% CI) p-Value HR (95% CI) p-Value

180-day all-cause mortality
Glutamine 25/75 (36%) 73/159 (46%) 1.37 (0.88 to 2.13) p = 0.163 1.27 (0.81 to 1.99) p = 0.289
Glutamate 25/74 (34%) 75/160 (47%) 1.64 (1.05 to 2.59) p = 0.031 1.67 (1.06 to 2.63) p = 0.028
1-year all-cause mortality
Glutamine 31/75 (41%) 83/159 (52%) 1.39 (0.92 to 2.10) p = 0.119 1.31 (0.86 to 1.99) p = 0.203
Glutamate 28/74(38%) 86/160 (54%) 1.68 (1.10 to 2.58) p = 0.017 1.69 (1.10 to 2.59) p = 0.017
2-year all-cause mortality
Glutamine 41/75 (55%) 95/159 (60%) 1.23 (0.85 to 1.77) p = 0.269 1.20 (0.83 to 1.74) p = 0.331
Glutamate 33/74 (45%) 103/160 (64%) 1.76 (1.19 to 2.60) p = 0.005 1.78 (1.20 to 2.64) p = 0.004
3-year all-cause mortality
Glutamine 41/75 (55%) 99/159 (62%) 1.28 (0.89 to 1.84) p = 0.191 1.25 (0.86 to 1.80) p = 0.238
Glutamate 38/74 (51%) 102/160 (64%) 1.53 (1.05 to 2.22) p = 0.025 1.57 (1.08 to 2.28) p = 0.019
5-year all-cause mortality
Glutamine 45/75 (60%) 108/159 (68%) 1.28 (0.90 to 1.81) p = 0.167 1.24 (0.87 to 1.77) p = 0.224
Glutamate 46/74 (62%) 107/160 (67%) 1.38 (0.98 to 1.96) p = 0.067 1.42 (1.00 to 2.01) p = 0.050

Cox regression models reporting adjusted hazard ratios according to levels stratified by cut-off values of glutamine
(595.5 µmol/L) and glutamate (167.5 µmol/L). Low levels are defined as less than or equal to the cut-off value,
and high levels are defined as greater than the cut-off value. Abbreviations: HR, hazard ratio; CI, confidence
interval. * Adjusted for CCI, CRP, NRS total score, sex, and intervention.
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Figure 2. Kaplan–Meier estimate for 30-day and 180-day mortality according to high versus low
glutamine (Gln) or glutamate (Glu) levels. Glutamine and glutamate levels at admission were
stratified by the cut-off value (Gln 595.5 µmol/L; Glu 167.5 µmol/L). Low levels are defined as less
than or equal to the cut-off value, and high levels are defined as greater than the cut-off value. All
HR shown are adjusted for CCI, CRP, NRS total score, sex, and intervention.
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4. Discussion

This secondary analysis of a randomized trial investigating possible implications
of glutamine, glutamate, and their ratio, respectively, regarding outcome and treatment
response has several key findings. First, among medical inpatients at nutritional risk,
neither glutamine nor glutamate are well correlated with established nutritional markers
and thus may not be viewed as markers for malnutrition. Second, patients with low
glutamine levels did not show an increased mortality, whereas patients with low glutamate
levels had a significantly higher risk of dying within 30 days. Glutamate was also a strong
prognostic marker for other adverse outcomes. Our findings remained robust in different
statistical models adjusted for possible confounders. Third, low glutamine levels, low
glutamate levels, or a low ratio of glutamate to glutamine were not associated with a more
pronounced response to individualized nutritional therapy in terms of 30-day mortality.
Therefore, these metabolites may not be considered predictive markers of response to
nutritional treatment. Several of these findings need further comment.

We found no association between low plasma levels of glutamine or glutamate and
several malnutrition parameters. Nevertheless, glutamine was low in our cohort, compared
to a healthy French cohort [35] that was using the same analysis kit (mean glutamine plasma
level 522.5 µmol/L versus 627.9 µmol/L) and to a cancer patient cohort (522.5 µmol/L
versus 574.0 µmol/L) [9]. This finding is in line with previous trials that showed glutamine
depletion during severe illness and under catabolic conditions [2,6,7,40]. However, low
glutamine levels were not associated with a worse clinical outcome, which differs from
previous data from the ICU or after major surgery [7]. This may be explained by the less
severely ill patient cohort, in which glutamine depletion may also have been less severe
and, thus, had no negative implications for the clinical outcome. While most studies in
the ICU show that low glutamine levels are associated with poorer clinical outcomes,
there is also evidence that high glutamine levels are associated with increased mortality,
mainly due to impaired hepatic glucose metabolism [41]. We could not find this U shape
in our data, and we assumed that most patients had a functioning glucose metabolism
because we did not include critically ill patients and had liver failure as an exclusion
criterion. Regarding glutamate levels, we observed increased concentrations in our patient
population: the average glutamate level was 152.1 µmol/L. This is about three times higher,
as compared to 46.2 µmol/L in healthy French subjects and 63.2 µmol/L in cancer patients,
respectively. Since our population was polymorbid and at nutritional risk, we assumed
that high plasma glutamate levels could result from high degradation and consumption
rates of glutamine, a phenomenon that was observed in secondary analyses investigating
cardiometabolic risk and diabetes [42] but not in malnourished patients from the large
NOURISH trial [43], where glutamate was also low. However, we found that patients
with high glutamate levels had a survival benefit, a finding contrary to findings from
ICU trials [44] but in line with a secondary analysis of medical inpatients [43]. Metabolic
pathways are complex and can be influenced by several clinical conditions. Since we found
high glutamate levels, we assumed that the deamination of glutamate to α-ketoglutarate
by the glutamate dehydrogenase and feeding into the Krebs cycle was the limiting step in
energy production by glutamine, which is the upstream metabolite.

We found substantially more patients with low glutamine levels (159 low glutamine
vs. 75 high glutamine) in our patient population. This is consistent with evidence that glu-
tamine is depleted in conditions of high inflammation, cancer [9], and infection [4], as well
as in patients with burn injuries, which is associated with weaker immune system perfor-
mance [45]. Therefore, several trials have investigated whether glutamine supplementation,
as recommended in various guidelines [13,46], has a benefit on clinical outcomes, such
as mortality and rehospitalization, due to its immune-enhancing effects [45]. However,
the most recent multicenter, double-blind, randomized control trial by Heyland et al. in
2022 failed to show the benefit of enteral guideline-compliant glutamine supplementation
in severe burn patients when accounting for time to discharge alive from the hospital,
6-month mortality, or the occurrence of bacteremia [12]. Besides this study, there were some
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smaller trials [11] demonstrating the beneficial effect of glutamine supplementation. Nev-
ertheless, a systematic review and meta-analysis confirmed that supplementation has no
effect on the reduction in hospital mortality, infectious complications, or the intensive care
unit stay in patients with critical illness [10]. Whether glutamine supplementation in less
severely ill and malnourished medical inpatients would be beneficial remains unclear and
needs further investigations. Although we found elevated glutamate levels in our patient
population, high glutamate levels were also associated with better survival. Therefore, the
role of glutamate supplementation remains unclear.

We also investigated the response to nutritional interventions as a function of glu-
tamine or glutamate levels, yet no difference in the efficacy of nutritional support was
found between patients with high and low glutamine or glutamate concentrations. Our
findings, thus, do not support the measurement of these metabolites to explain variability
in response to treatment and to further personalize nutritional support.

Strengths and Limitations

The greatest strengths of this study include the well-characterized patient cohort,
the randomized design, and the prospectively collected short- and long-term outcomes.
This allowed us to adjust our analysis for potential confounders, such as comorbidities
and nutritional parameters, and we obtained consistent results. Still, as this study is a
secondary analysis, the results should be viewed as exploratory and hypothesis-generating,
rather than definite, requiring confirmation in larger prospective samples. We are aware
of additional limitations, including the design of our subgroup analysis at a single center,
which results in lower statistical power and lower external validity. Additionally, we
measured glutamine and glutamate plasma levels at admission only, so the dynamics over
time and the effect of nutritional support on metabolite remains unclear. There are also
restraints regarding the metabolomic kit used. So far, it has mainly been used for research
purposes, and there is a lack of well-validated reference values.

5. Conclusions

This secondary analysis of a prospective randomized trial found glutamate to be an
independent prognostic parameter among medical inpatients at nutritional risk, but it was
poorly associated with the effectiveness of nutritional support. In contrast to findings from
intensive care, low glutamine levels in medical inpatients were not associated with worse
clinical outcomes. A better understanding of glutamine metabolism may help to further
improve risk assessment for unfavorable outcomes in medical patients at nutritional risk.
In addition, the effect of glutamine or glutamate supplementation in this less severely ill
patient population remains an open question for further research.
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