Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability

Valach, Alex Constantin; Kasak, Kuno; Hemes, Kyle S.; Anthony, Tyler L.; Dronova, Iryna; Taddeo, Sophie; Silver, Whendee L.; Szutu, Daphne; Verfaillie, Joseph; Baldocchi, Dennis D.; Kang, Hojeong (2021). Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability PLoS One, 16(3), e0248398. Public Library of Science (PLoS) 10.1371/journal.pone.0248398

[img]
Preview
Text
Valach et al., 2021 Wetland vegetation.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

Inundated wetlands can potentially sequester substantial amounts of soil carbon (C) over the long-term because of slow decomposition and high primary productivity, particularly in climates with long growing seasons. Restoring such wetlands may provide one of several effective negative emission technologies to remove atmospheric CO2 and mitigate climate change. However, there remains considerable uncertainty whether these heterogeneous ecotones are consistent net C sinks and to what degree restoration and management methods affect C sequestration. Since wetland C dynamics are largely driven by climate, it is difficult to draw comparisons across regions. With many restored wetlands having different functional outcomes, we need to better understand the importance of site-specific conditions and how they change over time. We report on 21 site-years of C fluxes using eddy covariance measurements from five restored fresh to brackish wetlands in a Mediterranean climate. The wetlands ranged from 3 to 23 years after restoration and showed that several factors related to restoration methods and site conditions altered the magnitude of C sequestration by affecting vegetation cover and structure. Vegetation established within two years of re-flooding but followed different trajectories depending on design aspects, such as bathymetry-determined water levels, planting methods, and soil nutrients. A minimum of 55% vegetation cover was needed to become a net C sink, which most wetlands achieved once vegetation was established. Established wetlands had a high C sequestration efficiency (i.e. the ratio of net to gross ecosystem productivity) comparable to upland ecosystems but varied between years undergoing boom-bust growth cycles and C uptake strength was susceptible to disturbance events. We highlight the large C sequestration potential of productive inundated marshes, aided by restoration design and management targeted to maximise vegetation extent and minimise disturbance. These findings have important implications for wetland restoration, policy, and management practitioners.

Item Type:

Journal Article (Original Article)

Division/Institute:

School of Agricultural, Forest and Food Sciences HAFL
School of Agricultural, Forest and Food Sciences HAFL > Agriculture

Name:

Valach, Alex Constantin0000-0003-4782-5766;
Kasak, Kuno;
Hemes, Kyle S.;
Anthony, Tyler L.;
Dronova, Iryna;
Taddeo, Sophie;
Silver, Whendee L.;
Szutu, Daphne;
Verfaillie, Joseph;
Baldocchi, Dennis D. and
Kang, Hojeong

ISSN:

1932-6203

Publisher:

Public Library of Science (PLoS)

Language:

English

Submitter:

Alex Constantin Valach

Date Deposited:

06 Feb 2024 15:16

Last Modified:

06 Feb 2024 15:16

Publisher DOI:

10.1371/journal.pone.0248398

ARBOR DOI:

10.24451/arbor.21050

URI:

https://arbor.bfh.ch/id/eprint/21050

Actions (login required)

View Item View Item
Provide Feedback