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Abstract. Nowadays, smartphones can collect huge amounts of data
from their surroundings with the help of highly accurate sensors. Since
the combination of the Received Signal Strengths of surrounding access
points and sensor data is assumed to be unique in some locations, it
is possible to use this information to accurately predict smartphones’
indoor locations. In this work, we apply machine learning methods to
derive the correlation between smartphones’ locations and the received
Wi-Fi signal strength and sensor values. We have developed an Android
application that is able to distinguish between rooms on a floor, and
special landmarks within the detected room. Our real-world experiment
results show that the Voting ensemble predictor outperforms individual
machine learning algorithms and it achieves the best indoor landmark
localization accuracy of 94% in office-like environments. This work pro-
vides a coarse-grained indoor room recognition and landmark localiza-
tion within rooms, which can be envisioned as a basis for accurate indoor
positioning.

Keywords: Machine learning, indoor localization, real-time landmark
detection

1 Introduction

High localization accuracy within buildings would be very useful - in particular,
large complex buildings like shopping malls, airports and hospitals would be well
served by this feature. It would make orientation within these highly complicated
structures much easier and would diminish the need for big floor maps scattered
all around these buildings. However, walls, roofs, windows and doors of the
buildings greatly reduce the GPS signals carried by radio waves, which leads to
a severe accuracy loss of GPS inside buildings.

Different solutions already exist for indoor localization of mobile devices such
as Pedestrian Dead Reckoning (PDR) and Wi-Fi fingerprinting based methods
[1] [2]. In PDR the future location of a smartphone user is predicted based on the
current location, and the movement information derived from the inertial sensor
measurements. In Wi-Fi fingerprinting, the Received Signal Strength (RSS) val-
ues of several access points in range are collected and stored together with the
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coordinates of the location. A new set of RSS values is then compared with the
stored fingerprints and the location of the closest match is returned.

In contrast to outdoors, building interiors normally have a large number of
different Wi-Fi access points constantly emitting signals. By scanning the area
around the device, we can measure the received signal strength of each of the
nearby access points. Because there are typically so many of them, we presume
that the list of all these values combined is unique at every distinct point in the
building. Furthermore, we can strongly assume that these values are also con-
stant over time as the access points are fixed in place and are constantly emitting
signals of the same strength. Of course, there may be occasional changes, for in-
stance if the network is remodeled, but we expect these changes to be infrequent.

In this way, we can collect lots of labeled location data of the building. How-
ever, because each data point may contain a very large number of Wi-Fi access
point RSS measurements and magnetic field measurements, the data is very com-
plex. Therefore, we propose using supervised Machine Learning (ML) methods
to process this large amount of collected data. By training a classifier (supervised
learning algorithm such as K-Nearest-Neighbor) on the collected labeled data,
rules can be extracted. Feeding in the actual live data (RSS values, magnetic
field values, illuminance level, etc.) of a moving user, the trained classifier can
then predict the user’s location on a coarse-grained level. We propose to apply
machine learning methods, both individual predictors and ensemble predictors,
to solve this task due to the large amount of features that are available in in-
door environments, such as Wi-Fi RSS values, magnetic field values, and other
sensor data. We expect that ensemble predictors can outperform the individual
machine learning algorithms to discover patterns in the data, which can then
be used to differentiate between different rooms and regions within the detected
rooms.

The rest of the paper is organized as follows. In Section 2 we present some
related work in indoor localization and landmark detection. Section 3 describes
the used machine learning models, including the individual and ensemble ones, as
well as the considered features to conduct the indoor landmark localization task.
Section 4 presents implementation and experiment details. Section 5 discusses
the performance results of our approach. Section 6 concludes the paper.

2 Related Work

Various machine learning-based approaches that use fingerprinting to estimate
user indoor locations have been proposed. Machine learning-based indoor local-
ization can be classified into generative or discriminative methods, which build
the machine learning model using a joint probability or conditional probability
respectively [1] [2]. K-Nearest-Neighbor (KNN) is the most basic and popular
discriminative technique. Based on a similarity measure such as a distance func-
tion, the KNN algorithm determines the k closest matches in the signal space
to the target. Then, the location of the target can be estimated by the average
of the coordinates of the k neighbors [3]. Generative localization methods apply



statistical approaches, e.g., Hidden Markov Model [4], Bayesian Inference [5],
Gaussian Processes [6], on the Wi-Fi fingerprint database. Thus, the accuracy
can obviously be improved by adding more measurements. In [6] for instance,
Gaussian Processes are used to estimate the signal propagation model through
an indoor environment. There is a limited number of works that have focused in
reducing off-line efforts in learning-based approaches for indoor localization [7]
[8] [9]. These approaches reduce the off-line effort by reducing either the number
of samples collected at each survey point or the number of survey points or both
of them. Then, a generative model is applied to reinforce the sample collection
data. In [7] for instance, a linear interpolation method is used. In [8], a Bayesian
model is applied. In [9], authors propose a propagation method to generate data
from collected samples. In [2], authors combine characteristics of generative and
discriminative models in a hybrid model. Although this hybrid model reduces
offline efforts, it still relies on a number of samples collected from fixed sur-
vey points (i.e., labeled samples) along the environment. Therefore, to maintain
high accuracy, the number of survey points shall be increased in larger envi-
ronments. Thus, collecting samples from numerous survey points will become a
demanding process, which makes the system unsuitable to large environments.
In [10], authors validated the performance of different individual machine learn-
ing approaches for indoor positioning systems. However, they rather compare
the results without any deep analysis of the performance difference. Moreover,
they did not discuss how ensemble learning approaches could be used to enhance
system performance.

In this work we present and analyze the performance of different individual
predictors as well as ensemble predictors for the indoor landmark localization
problem. This work could also be used as a basis of indoor tracking systems to
firstly locate the target with a coarse-grained accuracy using indoor landmark
localization, which then triggers the real-time localization algorithm to locate
the object around the detected landmarks. The located landmark can also be
used to correct the localization failures like the kidnapped robot problem [11].

3 Machine Learning-based Indoor Landmark Localization

An indoor landmark is defined as a small area within a room. The aim of the
indoor landmark localization system presented in this work is to improve the
accuracy of indoor landmark recognition using machine learning approaches. We
do this by excluding all the possible locations of the user within the room if the
system predicts the others by using landmarks. Thus, when a landmark has been
recognized, the indoor positioning system can use the identified coarse-grained
locations to optimize the positioning accuracy, such as revising positioning errors.

3.1 Algorithms

In this section, we shortly describe the machine learning algorithms that are
used in this work to perform the room landmark localizations.



Naive Bayes (NB) classifiers are a family of simple probabilistic classifiers
based on applying Bayes’ theorem with strong (naive) independence assumptions
between the features.

K-Nearest Neighbors (KNN) is a non-parametric method used for classifi-
cation and regression. In both cases, the input consists of the k closest training
examples in the feature space.

Support Vector Machine (SVM) is a supervised learning model with associ-
ated learning algorithms that analyze data used for classification and regression.
Given a set of training examples, each is marked as belonging to one or the
other category. An SVM training algorithm builds a model that assigns new
data measurements to one category or the other, making it a non-probabilistic
binary linear classifier.

Multilayer Perceptron (MLP) is a class of feed-forward artificial neural
network. An MLP consists of at least three layers of nodes. Except for the input
nodes, each node is a neuron that uses a nonlinear activation function.

Voting is one of the simplest ensemble predictors. It combines the predictions
from multiple individual machine learning algorithms. It works by first creating
two or more standalone prediction models from the training dataset. A Voting
classifier can then be used to wrap the models and average the predictions of
the sub-models when asked to make predictions for new data.

3.2 Features

In a machine learning-based classification task, the attributes of the classes are
denoted as features. Each feature is describing an aspect of the classes. In our
case features are our measurements, for instance an RSS value. To deliver good
machine learning prediction accuracy it is very important to select the right at-
tributes/features and to also modify certain features or even create new features
out of existing features.

Wi-Fi RSS values provide the core data as they contribute the most to the
performance of the ML methods. The smartphone scans the surrounding Wi-Fi
access points, obtains and registers the RSS values of each access point. Wi-
Fi RSS values depend on the distance between the smartphone and the Wi-Fi
access points. Normally, the Wi-Fi RSS values in our datasets were between -20
dBm and -90 dBm.



Magnetic Field (MF) The device’s sensors measure the magnetic field in the
device’s coordinate system. As the user walks around, the orientation of the
device may change all the time. Therefore, we have to collect all possible values
from every orientation in every point in the training phase. This would result in
a huge amount of data and the training performance would be inaccurate.

Light sensors might also be helpful to identify rooms. For instance, a room
facing a window will clearly be brighter than one surrounded by walls only. As
shown in Section 5 this does improve the prediction accuracy. However, these
assumptions are not stable, as the illuminance level might change over time.
Therefore, it is better to work with light differences instead of absolute values.

4 Implementation and Experiments

This section explains how the indoor room landmarks are defined and presents
details about how to make the room landmark localization using ML algorithms.

4.1 Room and Landmark Recognition

A room landmark is defined as a small area within a room, and room landmark
fingerprint database inlcudes theWi-FI RSS, MFmeasurements, and illuminance
level data measured within that small area. In the room recognition phase we
distinguish several rooms on the same floor. In the landmark recognition phase
we distinguish several landmarks inside the detected room. Therefore, we define
two landmarks in a small room with size of 3x3 meters, and four landmarks in
a normal office-sized room (5x5 meters). In a big room (7x7 meters) we define
five landmarks, one in each corner and one in the center, as shown in Figure 1.

Fig. 1. Five landmarks and the collection of red points (location examples) predicted
by the indoor landmark localization system.



4.2 System Architecture

Figure 2 shows the data flow and the different components of our developed
Android app. Sensor and Wi-Fi RSS values are measured by the smartphone
and received by the app. We then perform the data training process offline in a
PC to pass the collected data to the Model Training component, which applies
different machine learning algorithms to build the models. The trained models
are then optimized and transfered to the app on the smartphone for online
experiments.

Data Reception
(Android)

Model Training
(PC)

Landmark
Locations

MF, Light
Wi-Fi RSSI,

Data
Model Building

(PC)

Model Selection
(Android)

M
odel

Fig. 2. The architecture of the implemented Android app.

Considering that the landmark detection accuracy can be influenced by some
environmental parameters, we conduct some experiments to determine how pa-
rameters such as AP position or number of APs influence the accuracy of the Wi-
Fi-based fingerprinting landmark detection approach. Additionally, we perform
experiments to show how the accuracy is improved by considering additional
features such as magnetic field (MF) values and light illuminance level readings.
As shown in Figure 3, we define 9 wall separated areas in our experiment envi-
ronment. Hereafter, we refer to these areas as rooms. In our experiments, we do
not need to know the locations of the APs, while only the fingerprints of Wi-Fi
RSSI, MF readings, and illuminance level readings are recorded during the data
collection process.

Parameters of learning-based algorithms are optimized from training data.
Additionally, certain algorithms also have parameters that are not optimized dur-
ing the training process. These parameters are called hyperparameters, which
have significant impact on the performance of the learning-based algorithm.
Therefore, we use a nested cross validation technique to adjust them. The nested
cross validation technique defines an inner and outer cross validation. The inner
cross validation is intended to select the model with optimized hyperparameters,
whereas outer cross validation is used to obtain an estimation of the generaliza-
tion error. Ten-fold cross validation was applied on both inner and outer cross
validation. The classifiers were optimized over a set of hyperparameters. We op-
timized the global blend percentage ratio hyperparameter for KNN, kernel type
function for SVM, number of hidden layers and neurons per layer for MLP. Based
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Fig. 3. Experiment scenario and data collection path.

on the parameter optimization process, we established the optimal hyperparam-
eter values for the classifiers as follows: global blend percent ratio of 30% for
KNN, single order polynomial kernel, c = 1, γ = 0.0 for SVM, and single hidden
layer with 10 neurons for MLP.

4.3 Datasets

To test the room landmark detection performance, we performed experiments
on the third floor of the Computer Science building of the University of Bern, as
shown in Fig. 3. During the experiments, we collected 14569 data points in total,
3061 data points were collected from the biggest room (1) and 514 data points
were from the smallest room (4). Collecting the training dataset takes around
50 minutes. With the collected data, we build models with different data: the
first one builds the fingerprint using only collected Wi-Fi RSSI data, the second
one using Wi-Fi RSS together with MF readings, and the third one with Wi-Fi
RSS, MF readings, and illuminance level readings.

As described before, to build the landmark fingerprint database, we ask a
person to walk randomly around each room holding the phone in his/her hand.
Landmark fingerprint database entries must be collected equally distributed
along the whole area in each room. The data collection rate is only constrained by
computational capabilities of the Wi-Fi sensor of the smartphone. Thus, in our
experiments every data measurement was collected at a rate of 3 entries/second.
Because our approach does not need to predefine any survey point, the time
needed to build the landmark fingerprint database is proportional to the num-
ber of collected instances multiplied by the instance collection rate.



5 Results

5.1 Indoor Landmark Localization Accuracy

This section discusses the accuracy of the landmark detection model when dif-
ferent classifiers and features are used. When comparing their performance, it is
impossible to define a single metric that provides a fair comparison in all pos-
sible applications. We focus on the metrics of prediction accuracy, which refers
to the percentages of correct room recognition and landmark localization within
the detected room. Landmark definition is described in Section 4.1.

At first we use only Wi-Fi RSS values as inputs to machine learning algo-
rithms. Figure 4 shows the classification accuracy of different predictors when
different numbers of Wi-Fi RSS values are used. As we can see, starting from 5
RSS values, more RSS inputs increase the prediction accuracy for most of the
predictors. Nevertheless, after 7 Wi-Fi RSS values are used, the improvement of
adding more RSS values is almost negligible in all tested classifiers, and some of
the predictors even got reduced accuracy when additional RSS values are con-
sidered. We think that the signal interferences may be the reason for the worse
performance when more than 7 Wi-Fi RSS values are utilized. Therefore, we
take 7 Wi-Fi RSS as the default configuration for the following experiments.
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Fig. 4. Landmark prediction performance with different numbers of Wi-Fi RSS values.

Next, we compare the classification accuracy when using only Wi-Fi RSS,
Wi-Fi RSS plus MF, and Wi-Fi RSS plus MF and illuminance levels. Figure 5
shows the performance evaluation of the selected classifiers obtained with differ-
ent feature combinations. The best performance is reached by the Naive Bayes
classifier, which achieves 90.13% of instances correctly classified if the fingerprint



is composed by Wi-Fi RSS, MF readings, and illuminance levels. By using Wi-Fi
RSS, MF readings, and illuminance levels in the room landmark recognition, the
accuracy is improved in all tested classifiers.
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Fig. 5. Landmark prediction performance when using different features.

As mentioned before, hyperparameters have significant impacts on the per-
formance of the learning-based algorithm. Figure 6 shows the performance of
the selected classifiers with the hyperparameters optimized. The classifiers are
all fed with Wi-Fi RSS plus MF and illuminance levels. As we can see, compared
to results in Figure 5, all the classifiers have improved performance, and MLP
even reaches an accuracy of 92.08%. We also include the results of Voting, which
combines the prediction results of MLP, Naive Bayes, KNN, and SVM using
majority vote. It shows that Voting can reach an accuracy of 94.04%.

5.2 Result Analysis

In indoor environments, Wi-Fi RSSI and MF measurement vary dependent on
locations. However, these values will remain similar on nearby positions. For ex-
ample, on locations close to landmark borders, high similarities will be observed
on the RSS values. These similarities could lead to misclassification problems.
From Figure 5 we can see that KNN and SVM outperform others in terms of
accuracy when Wi-Fi RSS and MF readings are used. This is because KNN is
an instance-based learning algorithm, which uses entropy as a distance measure
to determine how similar two instances are. Thus, this method is more sensi-
tive to slight variations upon the instance as unity. J48 builds the classification
model by parsing the entropy of information at attribute level. It means that
J48 measures entropy in the attribute domain to decide which attribute goes
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Fig. 6. Landmark prediction performance of individual predictors with optimized hy-
perparameters and Voting ensemble predictor.

into a decision node. Therefore, the classification model is prone to misclassifica-
tion in the landmark detection problem. When the illuminance level is included
as input feature to predictors, Naive Bayes outperforms others. This is because
the feature of illuminance level is completely independent from other radio sig-
nal measurements, which fits with Naive Bayes’ strong assumptions about the
independence of each input variable.

To further explain how the Voting predictor improves the performance of
individual predictors, we show the confusion matrix of room recognition using
MLP, SVM, Naive Bayes (NB), and Voting in Tables 1 - 3. We can observe that
room 2 is correctly identified 527 times by MLP, 632 times by SVM and 393
times by NB. As a consequence, SVM seems to be better in predicting room 2
as compared to other two predictors. Furthermore, NB does not seem to have
less misclassification of class b compared to other two predictors. Analyzing
the results from the above-mentioned tables, MLP has misclassified class b 138
times, NB 272 times, and SVM only 33 times. From the confusion matrix of
Voting, as shown in Table 4, we can see that the Voting ensemble predictor
adopts behaviors of different individual predictors. For instance, it adopts the
good behavior of MLP and Naive Bayes, which leads to a much better prediction
accuracy for room 2. This can be observed from the only two misclassifications
of room 2 as room 9 as shown in Table 4. Unfortunately, it still has problems
in some classifications. For instance, there are 116 misclassification of room 8 as
room 4, which is probably due to a higher weight assigned to MLP instead of
SVM. In general, it can be observed that the Voting ensemble predictor improves
the accuracy, while there are still difficulties to distinguish small rooms that are
next to each other, as room 8 and 4 depicted in Figure 3.



Table 1. The confusion matrix for MLP with optimized hyperparameters.

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

0 527 0 0 0 0 0 0 138 | b = 2
0 25 865 0 0 0 0 0 0 | c = 3
0 9 0 154 0 0 0 128 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5
0 25 0 0 44 1249 0 0 0 | f = 6
0 6 0 0 0 0 1064 0 1 | g = 7
0 0 0 149 0 0 0 498 0 | h = 8
0 0 0 51 0 0 0 64 778 | i = 9

Table 2. The confusion matrix for SVM with optimized hyperparameters.

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

10 632 0 0 0 0 0 0 23 | b = 2
0 55 799 0 0 36 0 0 0 | c = 3
0 147 0 144 0 0 0 0 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5

204 69 32 0 0 1013 0 0 0 | f = 6
0 126 0 0 0 0 945 0 0 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 57 0 0 0 7 829 | i = 9

Table 3. The confusion matrix for Naive Bayes with optimized hyperparameters.

a b c d e f g h i <-- classified as
2149 0 0 0 15 0 0 0 0 | a = 1

0 393 9 153 0 0 0 110 0 | b = 2
0 0 876 0 0 14 0 0 0 | c = 3
0 130 0 135 0 0 0 26 0 | d = 4
1 0 44 0 628 0 0 12 0 | e = 5
0 0 101 0 0 1217 0 0 0 | f = 6
0 59 12 0 0 0 973 0 27 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 0 0 0 0 64 829 | i = 9

Table 4. The confusion matrix for the Voting ensemble classifier.

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

0 663 0 0 0 0 0 0 2 | b = 2
0 25 865 0 0 0 0 0 0 | c = 3
0 32 0 143 0 0 0 116 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5
0 69 0 0 0 1249 0 0 0 | f = 6
0 43 0 0 0 0 1027 0 1 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 0 0 0 0 64 829 | i = 9



6 Conclusions and Future Work

This work analyzes the performance of 5 common individual predictors and 1
ensemble predictor in indoor landmark localization to distinguish rooms on a
floor and special landmarks using machine learning methods. We have validated
the performance of the system using different smartphone sensor measurements,
such as Wi-Fi RSS, MF readings, and illuminance levels. Evaluation results show
that the Voting ensemble predictor achieves the best indoor landmark localiza-
tion accuracy of 94%. In the future, we will further optimize the hyperparame-
ter cross-validation procedure and integrate this work with an indoor tracking
system to firstly locate the target with a coarse-grained accuracy, which then
triggers the tracking algorithm to track the object around the located landmarks.
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