Schweizer, Theresa; Wyss, Thomas; Gilgen-Ammann, Rahel (2021). Detecting Soldiers' Fatigue Using Eye-Tracking Glasses: Practical Field Applications and Research Opportunities. Military medicine, 187(3-4), pp. 404-409. Oxford University Press 10.1093/milmed/usab509
|
Text
Wyss_2021_Detecting Soldiers’ Fatigue Using Eye-Tracking Glasses_Practical Field Applications and Research Opportunities.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (388kB) | Preview |
Objectively determining soldiers' fatigue levels could help prevent injuries or accidents resulting from inattention or decreased alertness. Eye-tracking technologies, such as optical eye tracking (OET) and electrooculography (EOG), are often used to monitor fatigue. Eyeblinks-especially blink frequency and blink duration-are known as easily observable and valid biomarkers of fatigue. Currently, various eye trackers (i.e., eye-tracking glasses) are available on the market using either OET or EOG technologies. These wearable eye trackers offer several advantages, including unobtrusive functionality, practicality, and low costs. However, several challenges and limitations must be considered when implementing these technologies in the field to monitor fatigue levels. This review investigates the feasibility of eye tracking in the field focusing on the practical applications in military operational environments.; This paper summarizes the existing literature about eyeblink dynamics and available wearable eye-tracking technologies, exposing challenges and limitations, as well as discussing practical recommendations on how to improve the feasibility of eye tracking in the field.; So far, no eye-tracking glasses can be recommended for use in a demanding work environment. First, eyeblink dynamics are influenced by multiple factors; therefore, environments, situations, and individual behavior must be taken into account. Second, the glasses' placement, sunlight, facial or body movements, vibrations, and sweat can drastically decrease measurement accuracy. The placement of the eye cameras for the OET and the placement of the electrodes for the EOG must be chosen consciously, the sampling rate must be minimal 200 Hz, and software and hardware must be robust to resist any factors influencing eye tracking.; Monitoring physiological and psychological readiness of soldiers, as well as other civil professionals that face higher risks when their attention is impaired or reduced, is necessary. However, improvements to eye-tracking devices' hardware, calibration method, sampling rate, and algorithm are needed in order to accurately monitor fatigue levels in the field.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
Swiss Federal Institute of Sports Magglingen SFISM > EHSM - Lehre und Sportpädagogik > Monitoring |
Name: |
Schweizer, Theresa; Wyss, Thomas and Gilgen-Ammann, Rahel |
ISSN: |
1930-613X |
Publisher: |
Oxford University Press |
Language: |
English |
Submitter: |
Service Account |
Date Deposited: |
01 Jul 2022 10:46 |
Last Modified: |
01 Jul 2022 10:46 |
Publisher DOI: |
10.1093/milmed/usab509 |
Related URLs: |
|
PubMed ID: |
34915554 |
Additional Information: |
An update has been published: Military Medicine, Volume 187, Issue 3-4, March/April 2022, Pages e404–e409 |
Uncontrolled Keywords: |
Fatigue Biological markers Blinking Electrooculography Eyeglasses Eye-tracking Monitoring |
ARBOR DOI: |
10.24451/arbor.16842 |
URI: |
https://arbor.bfh.ch/id/eprint/16842 |