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Abstract. Conditionally automated cars share the driving task with the driver. 

When the control switches from one to another, accidents can occur, especially 

when the car emits a takeover request (TOR) to warn the driver that they must 

take the control back immediately. The driver’s physiological state prior to the 

TOR may impact takeover performance and as such was extensively studied ex-

perimentally. However, little was done about using Machine Learning (ML) to 

cluster natural states of the driver. In this study, four unsupervised ML algorithms 

were trained and optimized using a dataset collected in a driving simulator. Their 

performances for generating clusters of physiological states prior to takeover 

were compared. Some algorithms provide interesting insights regarding the num-

ber of clusters, but most of the results were not statistically significant. As such, 

we advise researchers to focus on supervised ML using ground truth labels after 

experimental manipulation of drivers’ states.  
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1 Introduction 

Research on conditionally automated driving has been extensively conducted in the last 

few years. One of the main challenges is to optimize the interaction between the car 

and the driver, especially in situations of handover of control. When a takeover request 

(TOR) is issued, drivers are expected to take over the control of the car in a short period 

of time and with the adequate behavior (e.g. braking and/or turning the wheel). The 

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
1
6
6
4
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
4
.
2
0
2
4

mailto:emmanuel.desalis,%20colin.pelletier,%20stefano.carrino%7D@he-arc.c
mailto:quentin.meteier,%20marine.capallera,%20leonardo.angelini,%20omar.aboukhaled,%20%0Belena.mugellini%7D@hes-so.c
mailto:quentin.meteier,%20marine.capallera,%20leonardo.angelini,%20omar.aboukhaled,%20%0Belena.mugellini%7D@hes-so.c
mailto:marino.widmer@unifr.ch


physiological state of the driver prior the TOR is critical and was shown to impact the 

takeover performance [1], [2], motivating the need to know the physiological state of 

the driver before triggering a TOR. This information could then be used to improve 

takeover performance. In previous studies, this has been addressed by experimentally 

influencing drivers' physiological states with the use of secondary tasks which was then 

used as ground truth information. To the extent of our knowledge, little was done on 

studying natural clusters of driver physiological states. Knowing the general state of the 

driver, meaning in which cluster they are, could be used to improve the takeover quality 

by adjusting the TOR to their state. As such the goal of this study is to find out if Ma-

chine Learning (ML) can be used as a tool to distinguish relevant clusters of drivers 

based on their physiological state before a TOR. 

2 Related Work 

2.1 Psychophysiological Data Clustering 

The ML algorithms need to focus on the most relevant features and on coherent data 

only [3]. Furthermore, the Bayesian Information Criterion (BIC) score cannot be used 

with a dataset in which the number of samples are not considerably higher than the 

number of features extracted [4], which is the case in this study (108 feature for 304 

samples).  

As such, the mean and the standard deviation provide information about data distri-

bution into a feature [3]. This can be exploited in the feature selection with a variance 

threshold. 

Models of the driver’s state are being studied, but they usually aim at classifying 

driver’s condition using states that are manipulated experimentally [5], [6]. Other 

sources of data such as driving behavior [7] were shown to be valuable to classify the 

driver’s state. Yet, this source of data cannot be used anymore in high levels of auto-

mation. Previous studies classified various drivers’ states using physiological data, such 

as stress [8], [9], fatigue [10], or cognitive workload [6]. However, only few studies 

tried to perform unsupervised ML tasks using physiological indicators in such context 

[11], [12]. 

3 Methodology 

3.1 Data collection 

Electrodermal activity (EDA), Electrocardiogram (ECG) and respiration (RESP) of 80 

subjects were collected during an hour of conditionally automated driving in a driving 

simulator. Participants spent the first 5 minutes in autonomous mode monitoring the 

environment only. This phase was used as a baseline for the physiological state of each 

driver. Then, participants had to drive manually for 5 minutes, while the takeover pro-

cess was explained and showed to them (three takeovers). The TOR was indicating by 

displaying a red icon on the dashboard and an audio chime. In the main driving session, 

participants had to perform a succession of non-driving related, cognitive demanding 



tasks (N-back task) on a tablet held in hands while the car was driving. Participants 

were instructed to take over control of the car when requested. All participants had to 

react to 5 takeover situations due to an automation limitation. The cause of each takeo-

ver request was different but in the same order for all participants: steep road ahead and 

no visibility behind, vanishing and then fully erased lane markings, a rock on the driv-

ing lane, heavy rain, and a deer standing on the right side of the road and then crossing. 

There were 5 different tasks: visual low cognitive, visual high cognitive, auditory low 

cognitive, auditory high cognitive or no task (e.g. monitoring the environment). Each 

participant was completing all the five non-driving task in one driving session. The 

order of non-driving tasks presented to each participant was controlled using a Latin 

Square Design. 

3.2 Physiological features 

The Neurokit [13] library in Python was used to process the 3 signals and compute 

physiological indicators. Different time windows before takeovers were used to calcu-

late them: 30, 60, 90, 120 and 150 seconds. Each indicator calculated with Neurokit 

served as a feature for the clustering task. Also, an additional feature was created from 

each indicator: a baseline correction was applied to each indicator (e.g. subtracting the 

value of that indicator during baseline) in order to remove the individual differences of 

drivers at rest. Overall, a total of 120 features (10 for EDA, 27 for ECG, 19 for RESP, 

4 for Respiratory Sinus Arrhythmia) were calculated using each time window before 

each takeover for the 80 participants. 

3.3 Machine Learning 

Outliers detection The Z-Score is used to detect outliers based on a Gaussian probabil-

istic distribution. For each feature, every samples with an absolute Z-Score strictly 

greater than 3 (|Z-Score| > 3), which corresponds to 3 standard deviations from the 

mean, are considered as outliers and are ignored for the following processes. 

 

Features selection Since the dataset contains a large amount of features (108), it is nec-

essary to select the most important ones. The Pearson correlation coefficient gives in-

formation about the linear relation between two features. Firstly, relations with a coef-

ficient of correlation greater than 0.8 are removed. Removing a relation corresponds to 

remove one of the two features which are part of the relation. Finally, the Pearson cor-

relation coefficient is used again to remove relations with a correlation coefficient 

greater than 0.8. The feature selection is made in two steps to keep as many features as 

possible. 

Another avenue of research is using a variance threshold to select the features. How-

ever, this method has not provided better results than the one with Pearson correlation 

coefficient and was thus abandoned. 

The total number of features kept for each time window is presented in Table 1. 

 



Table 1.  Total number of features kept in each time window after the feature selection 

process  

Time window 30s 60s 90s 120s 150s 

Final number 

of features 

13 13 14 15 13 

 

Clustering algorithms The selected machine learning algorithms K-Means, EM-GMM, 

DBSCAN and Mean-Shift have been tested on this dataset, once outliers detection and 

features selection have been processed. All those algorithms hyperparameters were op-

timized using the methodology presented in the following section. The resulting clus-

ters from these algorithms are then evaluated and compared in order to choose final 

hyperparameters and also the most efficient algorithm for this specific task. 

 

Parameters definition With K-Means, the elbow method was used to estimate the opti-

mal number of clusters. Then, to further refine the exact number of clusters, it was 

combined with the Silhouette score which informs about clustering quality. It was also 

further confirmed with the Mutual Information (MI) score, which informs about clus-

ters’ stability. Silhouette score and MI score range typically from 0 to 1, with 1 being 

the best score possible. 

With EM-GMM, the BIC score is usually a good indicator to select the optimal num-

ber of clusters and the optimal covariance type. Since the number of features has been 

sufficiently reduced, it can be used on this dataset. Nevertheless, these supposedly op-

timal parameters do not provide the best results for the MI score or the Silhouette score. 

As every indicator provided different optimal parameters, multiple combinations have 

been compared with K-Means clustering. 

With Mean-Shift, the parameter to define is the bandwidth. A finite field of band-

widths values (from 2 to 20) were tested until the algorithm clustered every sample into 

a cluster. For each bandwidth of the finite field, the population of every cluster as well 

as the number of clusters that it involves were checked. 

With DBSCAN, the parameters to fine-tune are the maximum distance between two 

samples for one to be considered as in the neighborhood the other (eps) and the mini-

mum of samples in a neighborhood to consider the neighborhood as a cluster (minPts). 

Two finite fields of values were created for both parameters. All the combinations be-

tween the values of these two fields have been tested until every sample was contained 

into a cluster or until most of the samples were considered as noise. For each combina-

tion, the population of every cluster as well as the number of clusters created were an-

alyzed. 

4 Results 

Overall, Mean-Shift and DBSCAN were not able to achieve significant results, despite 

trying several configurations of parameters. For K-Means, a Silhouette score of 0.10 

was attained (std: 0.00) and a MI of 0.8 (std: 0.1) using the 30s time window and 3 

clusters. EM-GMM (spherical) presented two interesting clustering results, with a Sil-

houette score and MI of respectively 0.25 (std: 0.01) and 0.87 (std: 0.27) for the 60s 

time window, and 0.38 (std: 0.08) and 0.85 (std: 0.33) for the 120s time window, with 



2 clusters each time. Both situations presented one cluster significantly smaller than the 

other one 70 vs 255 (for the 60s) and 41 vs 291 (for the 120s). Also, we analysed if 

those two clusters match the 2 physiological states that were manipulated experimen-

tally: no task (20% of the dataset) vs. task (80% of the dataset). After a comparison of 

the samples in each cluster, it appears that this is not the case. 

In both situations, the models seem to gather more extreme values in a cluster (the 

small one), and keep the other ones in another cluster (the large one). As such, analysis 

of the features revealed extreme standard deviations in the smaller cluster, rendering 

further analysis unnecessary. 

5 Conclusion 

The current results show that there are no clear clusters of physiological data prior a 

TOR. Unsupervised ML algorithms were not successful in creating relevant clusters, 

despite testing several time windows. Bigger time windows and more refined features 

can still be tested, but our first results seem to hint that this is a difficult task. 

As such, we advise researchers to focus on supervised ML using ground truth labels 

after experimental manipulation of drivers’ states. 
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