
manuscripta math. 138, 315–345 (2012) © Springer-Verlag 2011

Horst Heck, Hyunseok Kim, Hideo Kozono

On the stationary Navier–Stokes flows around
a rotating body

Received: 11 February 2011 / Revised: 9 September 2011
Published online: 15 October 2011

Abstract. Consider the stationary motion of an incompressible Navier–Stokes fluid around
a rotating body K = R

3 \ � which is also moving in the direction of the axis of rotation.
We assume that the translational and angular velocities U, ω are constant and the external
force is given by f = div F . Then the motion is described by a variant of the station-
ary Navier–Stokes equations on the exterior domain � for the unknown velocity u and
pressure p, with U, ω, F being the data. We first prove the existence of at least one solution
(u, p) satisfying ∇u, p ∈ L3/2,∞(�) and u ∈ L3,∞(�) under the smallness condition on
|U | + |ω| + ‖F‖L3/2,∞(�). Then the uniqueness is shown for solutions (u, p) satisfying
∇u, p ∈ L3/2,∞(�) ∩ Lq,r (�) and u ∈ L3,∞(�) ∩ Lq∗,r (�) provided that 3/2 < q < 3
and F ∈ L3/2,∞(�) ∩ Lq,r (�). Here Lq,r (�) denotes the well-known Lorentz space and
q∗ = 3q/(3 − q) is the Sobolev exponent to q .

0. Introduction

Let� be an exterior domain in R
3 with smooth boundary ∂�. Consider the motion

of an incompressible Navier–Stokes fluid around the rigid body K = R
3 \�which

is rotating about an axis with constant angular velocity ω = ce3 = (0, 0, c)T . We
also assume that the body K is moving in the direction of the axis of rotation with
constant velocity U = ke3. Then with respect to a coordinate system attached to
the body, the velocity u = (u1, u2, u3)

T and pressure p of the fluid is governed
by the following initial boundary value problem for a variant of the Navier–Stokes
equations in � (see [7,12,18] for a detailed derivation):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + div (u ⊗ u)+ Lu + ∇ p = div F in �× (0,∞),

div u = 0 in �× (0,∞),

u = ω ∧ x − U on ∂�× (0,∞),

u(x, t) → 0 as |x | → ∞, t > 0,
u(·, 0) = u0 in �,

(0.1)
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where L is the linear differential operator defined by

Lu = −�u + (U − ω ∧ x) · ∇u + ω ∧ u.

Here u0 and f = div F denote the given initial velocity and the external force,
respectively.

The nonstationary problem (0.1) has been studied from the mathematical point
of view by Hishida [18], Galdi [12], Galdi and Silvestre [14], Geissert et al. [17]
and Hishida and Shibata [20], since the global existence of weak solutions was
established by Borchers [3] in 1992. Of particular interest are the global existence
and stability results in [14] and [20] for the problem (0.1) with U = 0, which
corresponds to the fluid motion around a purely rotating rigid body. In particular,
Hishida and Shibata [20] showed that if u0 is sufficiently close in L3,∞(�) to a
small stationary solution uS of (0.1) with U = 0, then there exists a unique global
solution u which tends to uS as t → ∞. This is a highly nontrivial extension of
the previous stability result by Kozono and Yamazaki [25] for the classical Navier–
Stokes problem, i.e, the problem (0.1) with U = ω = 0. It is also very important and
challenging to extend these stability results to the general case of possibly nonzero
U and/or ω, which requires a detailed study of stationary solutions of (0.1).

In this paper, we shall study the steady motion1 of the fluid around K, which
is described by stationary solutions of the problem (0.1); thus assuming that F is
time-independent, we consider the stationary problem in the exterior domain �:

⎧
⎪⎪⎨

⎪⎪⎩

Lu + div(u ⊗ u)+ ∇ p = div F in �,
div u = 0 in �,
u = ω ∧ x − U on ∂�,
u(x) → 0 as |x | → ∞.

(0.2)

The existence of a weak solution u of (0.2) satisfying finite Dirichlet integral (i.e.,
∇u ∈ L2(�)) and the energy inequality can be shown for arbitrarily large data by
applying the classical Galerkin method as in [3,12,30]. The solution u has a com-
plete local regularity property: it becomes smooth up to the boundary ∂� if F is
smooth enough. However there have been very few results on the asymptotic behav-
ior of u(x) as |x | → ∞ even for the classical Navier–Stokes equations. This makes
it extremely difficult to establish the uniqueness and stability of weak solutions of
(0.2) even though the data are assumed to be suitably small. Two approaches have
been developed to investigate such basic mathematical questions for the classical
Navier–Stokes equations in exterior domains.

The first approach due to Galdi and his collaborators relies on pointwise esti-
mates obtained by a detailed analysis of the volume potentials associated with the
Stokes and Oseen equations. In fact, Galdi and Simader [16] (see also [10,11])
showed that if ω = 0 and ‖(1 + |x |2)F‖L∞(�) is sufficiently small, then there
exists a unique weak solution u of (0.2) with finite Dirichlet integral and moreover
the solution u satisfies the decay estimate |u(x)| = O(|x |−1) at infinity, which

1 It should be noted that the steady motion with respect to a coordinate system attached to
the rigid body corresponds to a time-periodic motion with respect to the original coordinate
system. See [7,8] for more details.
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is the same as those of the fundamental solutions. An extension was obtained by
Galdi [13] to the rotating problem (0.1) with U = 0. Finally, Galdi and Silvestre
[15] showed that if |U | + |ω| + ‖div F‖L2(�) + ‖(1 + |x |2) F‖L∞(�) is suffi-
ciently small, then there exists a unique strong solution (u, p) of (0.2) satisfying
∇2u,∇ p ∈ L2(�), (1 + |x |) u ∈ L∞(�) and p ∈ Ls(�)(s > 3/2).

The second approach is of functional analytic nature and utilizes the theory of
weak Lq -spaces or more generally Lorentz spaces. The Lorentz spaces Lq,r (�)

have been introduced by Borchers and Miyakawa [4] and by Kozono and Yama-
zaki [24–26] in order to establish the existence, uniqueness and stability of station-
ary solutions of the classical Navier–Stokes equations. In particular, Kozono and
Yamazaki showed in [24] that if U = ω = 0 and ‖F‖L3/2,∞(�) is small, then the
problem (0.2) has at least one solution (u, p) satisfying ∇u, p ∈ L3/2,∞(�) and
u ∈ L3,∞(�). This result was extended by Farwig and Hishida [8] to the case of
non-zero angular velocity ω. However, it remains still open to prove the unique-
ness of solutions (u, p) of (0.2) satisfying ∇u, p ∈ L3/2,∞(�) and u ∈ L3,∞(�);
see e.g. [22] for a relevant discussion. Instead, as observed recently by Kim and
Kozono [22], a bootstrap argument enables us to deduce that if U = ω = 0, 3/2 <
q < 3, F ∈ L3/2,∞(�) ∩ Lq,r (�) and ‖F‖L3/2,∞(�) is small, then the problem
(0.2) has a unique solution (u, p) satisfying ∇u, p ∈ L3/2,∞(�) ∩ Lq,r (�) and
u ∈ L3,∞(�) ∩ Lq∗,r (�), where q∗ = 3q/(3 − q) is the Sobolev exponent to q.
Moreover, if q = r = 2, then the solution (u, p) satisfies the energy equality and
coincides with any weak solution satisfying the energy inequality whose existence
was established long ago in Leray’s celebrated paper [28].

The purpose of this paper is to establish the existence and uniqueness of solu-
tions of the problem (0.2) in the framework of Lorentz spaces, which extends the
results in [8,22,24] to the more general fluid model of possibly nonzero U and/or
ω. In fact, we shall show (see Theorems 1.1 and 1.2 in the next section) that

• (Existence) if |U | + |ω| + ‖F‖L3/2,∞(�) is small, then the problem (0.2) has at
least one solution (u, p) satisfying ∇u, p ∈ L3/2,∞(�) and u ∈ L3,∞(�); and

• (Unique solvability) if F ∈ L3/2,∞(�) ∩ Lq,r (�) for some 3/2 < q < 3 in
addition, then the problem (0.2) has a unique solution (u, p) satisfying ∇u, p ∈
L3/2,∞(�) ∩ Lq,r (�) and u ∈ L3,∞(�) ∩ Lq∗,r (�).

Our theorems are extensions of the previous existence and uniqueness results
given in [8,22,24] to the more general problem (0.2). Moreover, the unique solv-
ability of (0.2) is shown for more general external forces f = div F than in [15],
but with lack of such a pointwise estimate as |u(x)| = O

(|x |−1
)

at infinity. On the
other hand, it was shown in [22] that weak solutions of (0.2) satisfying the energy
inequality are unique if U = ω = 0, F ∈ L3/2,∞(�)∩ L2(�) and ‖F‖L3/2,∞(�) is
small. The proof is based on a uniqueness criterion due to Kozono and Yamazaki
[26] which we have a serious difficulty in extending to the rotating caseω �= 0. This
difficulty, which is caused by the presence of the unbounded term (ω ∧ x) · ∇u in
Lu, has not been resolved yet. Hence the uniqueness of weak solutions satisfying
the energy inequality remains still open for the problem (0.2) with nonzero angular
velocity ω.
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Our results on the nonlinear problem (0.2) are deduced from the correspond-
ing results on its linearized problem by means of a standard fixed point theorem
together with a bootstrap argument. The linearized problem in Lorentz spaces has
been studied in great detail by Kozono and Yamazaki [24] and Farwig and Hish-
ida [8] for the special cases of U = ω = 0 and U = 0, respectively. We will
obtain a complete Lq,r -result (see Theorem 1.3 below) for the linearized problem
of (0.2), by following the argument of Farwig and Hishida [8] with the help of the
Lq -estimate due to Kračmar et al. [27].

The outline of this paper is as follows. In Sect. 0, we shall state all of our main
results with some basic definitions introduced. Section 1 is devoted to proving the
unique solvability result in Lq,r (�) for the linearized problems in the whole space
and bounded domains. In Sect. 2, we then obtain a complete Lq,r -result for the
linearized problem in exterior domains. Finally we complete the proofs of the main
results for the nonlinear problem (0.2) in Sect. 3.

1. Results

To begin with, we rewrite the problem (0.2) as an equivalent problem with homoge-
neous boundary conditions by using a simple change of variables. Let η ∈ C∞

0 (R
3)

be a fixed cut-off function with η = 1 near ∂�, and let us define

b(x) = 1

2
rot
[
η(x)
(

U ∧ x − |x |2ω
)]
.

It is easy to show that
{

b ∈ C∞
0 (R

3), div b = 0 in R
3, b|∂� = ω ∧ x − U,

‖b‖L∞(R3) + ‖∇b‖L∞(R3) ≤ C (|U | + |ω|) (1.3)

for some constant C = C(�). Hence any solution (u, p) of (0.2) is determined
uniquely by (u, p) = (v + b, π) for a solution (v, π) of the following homoge-
neous problem in the exterior domain �:

(NS)

⎧
⎪⎪⎨

⎪⎪⎩

Lv + ∇π = div (F − Qb(v)) in �,
div v = 0 in �,

v = 0 on ∂�,
v(x) → 0 as |x | → ∞,

where Qb is the nonlinear operator defined by

Qb(v) = (v + b)⊗ (v + b)− ∇b + (U − ω ∧ x)⊗ b + b ⊗ (ω ∧ x). (1.4)

From now on, we shall study the solvability of the exterior nonlinear problem (NS)
in the framework of Lorentz spaces.

Let D be the whole space R
3, or a bounded or exterior domain in R

3 with
smooth boundary. For 1 < q < ∞ and 1 ≤ r ≤ ∞, Lq(D) and Lq,r (D) denote
the usual Lebesgue and Lorentz spaces over D with norms ‖ · ‖q;D and ‖ · ‖q,r;D,

respectively.
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The completion of C∞
0 (D) with respect to the norm ‖∇ · ‖q;D is denoted by

Ḣ1
q(D). By real interpolation, we define Ḣ1

q,r(D)by Ḣ1
q,r(D)= (Ḣ1

q0
(D),Ḣ1

q1
(D))θ,r,

where 1 < q0 < q < q1 < ∞ and 0 < θ < 1 satisfy 1/q = (1 − θ)/q0 + θ/q1.
It is well-known (see [1] for instance) that C∞

0 (D) is dense in both Lq,r (D)

and Ḣ1
q,r (D) if 1 ≤ r < ∞. Denote by L̂q,r (D) and Ĥ1

q,r (D) the closures of

C∞
0 (D) in Lq,r (D) and Ḣ1

q,r (D), respectively; of course, L̂q,r (D) = Lq,r (D)

and Ĥ1
q,r (D) = Ḣ1

q,r (D) for 1 ≤ r < ∞. Note that Lq,r (D) = L̂q ′,r ′(D)∗,
where q ′ and r ′ denote the Hölder exponents to q and r, respectively. We also
define Ḣ−1

q,r (D) = Ĥ1
q ′,r ′(D)∗ and Ḣ−1

q (D) = Ḣ−1
q,q(D) = Ḣ1

q ′(D)∗, so that

Ḣ−1
q,r (D) = (Ḣ−1

q0
(D), Ḣ−1

q1
(D))θ,r . We denote by 〈·, ·〉 simultaneously the duality

pairings between Lq,r (D) and Lq ′,r ′(D) as well as between Ĥ1
q,r (D) and Ḣ−1

q ′,r ′(D).

Finally, the norm of Ḣ±1
q,r (D) is denoted by ‖ · ‖±1,q,r;D or simply by ‖ · ‖±1,q,r if

D is the exterior domain � under consideration.
It was shown by Kozono and Yamazaki [24] (see Lemma 3.1 below) that if

w ∈ Ḣ1
q,r (�) for some (q, r) satisfying either 1 < q < 3 or (q, r) = (3, 1), then

w(x) → 0 as |x | → ∞ and w = 0 on ∂� in some weak sense. Hence we define
weak solutions of (NS ) as follows:

Definition 1.1. Let (q, r) satisfy either 1 < q < 3, 1 ≤ r ≤ ∞ or (q, r) = (3, 1).
Suppose that F ∈ Lq,r (�). Then a pair (v, π) in Ḣ1

q,r (�) × Lq,r (�) is called a
weak solution or simply a solution of (NS) if

(1) div v = 0 in �,
(2) (U − ω ∧ x) · ∇v + ω ∧ v ∈ Ḣ−1

q,r (�),

(3) 〈∇v,∇w〉 + 〈(U −ω∧ x) · ∇v+ω∧ v,w〉 = 〈π, divw〉 − 〈F − Qb(v),∇w〉
for all w ∈ C∞

0 (�).

The main purpose of this paper is to establish the existence and uniqueness of solu-
tions of (NS ) under the smallness condition on |U | + |ω| + ‖F‖3/2,∞. We first
prove the existence of at least one solution in Ḣ1

3/2,∞(�)× L3/2,∞(�) of (NS ).

Theorem 1.1. There are small positive constants δ0 = δ0(�) and ε0 = ε0(�) such
that if F ∈ L3/2,∞(�) and |U | + |ω| + ‖F‖3/2,∞ ≤ δ0, then there exists a unique
weak solution (v, π) ∈ Ḣ1

3/2,∞(�)× L3/2,∞(�) of (NS ) satisfying the estimate

‖v‖3,∞ ≤ ε0. (1.5)

Moreover we have

‖v‖3,∞ + ‖∇v‖3/2,∞ + ‖π‖3/2,∞ ≤ C0
(|U | + |ω| + ‖F‖3/2,∞

)
(1.6)

for some constant C0 = C0(�) > 0.

Remark 1.1. If (v, π) is a solution of (NS ) obtained by Theorem 1.1, then (u, p) =
(v + b, π) is a weak solution of the original stationary problem (0.2).

Remark 1.2. Theorem 1.1 was first proved by Kozono and Yamazaki [24] for the
special case U = ω = 0 and then by Farwig and Hishida [8] for the more general
case U = 0. Our result is an extension of the previous results in [24,8] to the more
general problem (NS) with possibly nonzero U and/or ω.
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As an application of Theorem 1.1, we deduce the continuous dependence of the
solution of (NS) on the data with respect to the weak-∗ topology.

Corollary 1.1. Let F ∈ L3/2,∞(�) and (U, ω) = (ke3, ce3) ∈ R
3 × R

3. Let δ0
be the same constant as in Theorem 1.1, and suppose that Fn → F weakly-∗ in
L3/2,∞(�), (kn, cn) → (k, c) in R

2 and ‖Fn‖3/2,∞ + |kn| + |cn| ≤ δ0 for each
n ∈ N. For each n ∈ N, we denote by (vn, πn) the weak solution in Ḣ1

3/2,∞(�)×
L3/2,∞(�) of (NS) satisfying (1.5), with (F,U, ω) replaced by (Fn, kne3, cne3).
Further let (v, π)be the weak solution in Ḣ1

3/2,∞(�)×L3/2,∞(�)of (NS) satisfying

(1.5). Then the sequence {(vn, πn)} converges to (v, π) weakly-∗ in Ḣ1
3/2,∞(�)×

L3/2,∞(�).
Remark 1.3. Corollary 1.1 extends a stability result due to Shibata and Yamazaki
[29] to the more general, possibly rotating, Navier–Stokes flows.

It remains still open to prove the uniqueness of solutions in Ḣ1
3/2,∞(�)×L3/2,∞(�)

of (NS) for small ‖F‖3/2,∞ without the smallness condition (1.5) on the solutions
themselves, even in case of the classical Navier–Stokes problem, i.e., (NS) with
U = ω = 0; see [22] for more details. We shall however establish the unique-
ness of solutions of (NS ) in some supercritical solution spaces. To state our result
precisely, let us introduce the following function spaces: for 3/2 ≤ q < 3 and
1 ≤ r ≤ ∞, we define

Vq,r = Ḣ1
3/2,∞(�) ∩ Ḣ1

q,r (�) and �q,r = L3/2,∞(�) ∩ Lq,r (�).

Both Vq,r and �q,r are Banach spaces equipped with the natural norms

‖v‖Vq,r = ‖∇v‖3/2,∞ + ‖∇v‖q,r and ‖π‖�q,r = ‖π‖3/2,∞ + ‖π‖q,r ,

respectively.

Theorem 1.2. Suppose that 3/2 < q < 3 and 1 ≤ r ≤ ∞. Then there is a small
positive constant δ = δ(�, q, r) such that if F ∈ �q,r and |U |+|ω|+‖F‖3/2,∞ ≤
δ, then there exists a unique weak solution (v, π) ∈ Vq,r ×�q,r of (NS ). Moreover,
we have

‖v‖3,∞ + ‖∇v‖3/2,∞ + ‖π‖3/2,∞ ≤ C
(|U | + |ω| + ‖F‖3/2,∞

)

and

‖v‖q∗,r + ‖∇v‖q,r + ‖π‖q,r ≤ C ′ (|U | + |ω| + ‖F‖q,r
)

for some constants C = C(�) and C ′ = C ′(�, q, r), where q∗ = 3q/(3 − q) is
the Sobolev exponent to q.

Remark 1.4. (1) The existence of a unique solution (v, π) of (NS ) was proved first
by Galdi and Silvestre [15] under a stronger hypothesis that |U |+|ω|+‖div F‖2 +
‖(1 + |x |2) F‖∞ is sufficiently small. They also obtained the pointwise estimate
|v(x)| = O

(|x |−1
)

at infinity.
(2) In Theorem 1.2, we prove the unique solvability of (NS ) for more general

F than in [15], but with lack of a pointwise estimate at infinity.
(3) Theorem 1.2 also extends recent existence and uniqueness results by Kim

and Kozono [22] for the case U = ω = 0.



On the stationary Navier–Stokes 321

Remark 1.5. V3/2,∞ × �3/2,∞ = Ḣ1
3/2,∞(�) × L3/2,∞(�) is a critical solution

space for the classical Navier–Stokes equations from the viewpoint of scaling invari-
ance, while Vq,r ×�q,r is supercritical if q > 3/2. On the other hand, the smallness
on F needs to be assumed only in the scaling invariant space L3/2,∞(�).

As a consequence of Theorem 1.2, we also obtain the following continuous
dependence result.

Corollary 1.2. Let F ∈ �q,r and (U, ω) = (ke3, ce3) ∈ R
3 × R

3, where 3/2 <
q < 3 and 1 ≤ r ≤ ∞ are fixed. Suppose that Fn → F weakly-∗ in �q,r ,

(kn, cn) → (k, c) in R
2 and ‖Fn‖3/2,∞ + |kn| + |cn| ≤ δ for each n ∈ N, where δ

is the same constant as in Theorem 1.2. For each n ∈ N, we denote by (vn, πn) the
weak solution in Vq,r ×�q,r of (NS) with (F,U, ω) replaced by (Fn, kne3, cne3).
Further let (v, π) be the weak solution in Vq,r ×�q,r of (NS). Then the sequence
{(vn, πn)} converges to (v, π) weakly-∗ in Vq,r ×�q,r .

In order to obtain our results on the nonlinear problem (NS ), we need to study the
corresponding linearized problem. Consider the following linear problem in the
exterior domain �:

(S)

⎧
⎪⎪⎨

⎪⎪⎩

Lv + ∇π = f in �,
div v = g in �,

v = 0 on ∂�,
v(x) → 0 as |x | → ∞.

Following the argument of Farwig and Hishida [8] with the help of the Lq -esti-
mate due to Kračmar, Nečasová and Penel [27], we shall establish the complete
Lq,r -result for the linear problem (S) in Sect. 2.

Theorem 1.3. Let (q, r) satisfy one of the three conditions

(i) q = 3
2 , r = ∞;

(i i) 3
2 < q < 3, 1 ≤ r ≤ ∞;

(i i i) q = 3, r = 1.
(1.7)

Then for every f ∈ Ḣ−1
q,r (�) and g ∈ Lq,r (�) with (U − ω ∧ x)g ∈ Ḣ−1

q,r (�),

there exists a unique weak solution (v, π) ∈ Ḣ1
q,r (�)× Lq,r (�) of (S). Moreover,

for |U |+ |ω| ≤ M < ∞, there is a positive constant C = C(�, q, r,M) such that

‖∇v‖q,r + ‖π‖q,r ≤ C
(‖ f ‖−1,q,r + ‖g‖q,r + ‖(U − ω ∧ x)g‖−1,q,r

)
. (1.8)

Remark 1.6. Theorem 1.3 extends the previous result by Kozono and Yamazaki
[24] as well as the result by Farwig and Hishida [8] to the more general case of
possibly nonzero U and/or ω.
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2. Linear problems in the whole space and bounded domains

In this section, we study the unique solvability in the Lorentz spaces Lq,r of the
following linear problems in the whole space R

3 and on a smooth bounded domain
D ⊂ R

3:

(SR3)

{
Lv + ∇π = f in R

3,

div v = g in R
3

and

(SD)

⎧
⎨

⎩

Lv + ∇π = f in D,
div v = g in D,
v = 0 on ∂D.

2.1. The whole space problem (SR3)

Denote by S ′(R3) the space of all tempered distributions on R
3. Since Lq,r (R

3) ⊂
L1(R

3) + L∞(R3), it is obvious that Lq,r (R
3) ⊂ S ′(R3). It is quite well-known

(see [6, Proposition 1.2.1] e.g.) that if v is a distribution with ∇v ∈ S ′(R3), then
v ∈ S ′(R3). Hence it follows that Ḣ1

q,r (R
3) ⊂ S ′(R3).

By a direct calculation, we derive

div ((U − ω ∧ x) · ∇v − ω ∧ v)
= (U − ω ∧ x) · ∇ (div v) = div ((U − ω ∧ x) div v) (2.9)

for all v ∈ S ′(R3). Hence if (v, π) ∈ S ′(R3) is a distributional solution of (SR3),

then

�π = div h in R
3 (2.10)

and

Lv = f0 in R
3, (2.11)

where

h = f + ∇g − (U − ω ∧ x)g and f0 = f − ∇π.
The unique solvability in Lq,r of (2.10) was already shown by Kozono and Yama-
zaki [24, Lemmas 2.4 and 2.5].

Lemma 2.1. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. Then for every h ∈ Ḣ−1
q,r (R

3), there

exists a unique (very weak) solution π ∈ Lq,r (R
3) of (2.10). Moreover, we have

‖π‖q,r;R3 ≤ C‖h‖−1,q,r;R3

for some constant C = C(q, r).
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Sketch of the proof. The uniqueness follows from the classical Liouville theo-
rem for harmonic functions in R

3 or Lemma 2.2(b) below. To prove the exis-
tence, let h ∈ Ḣ−1

q,r (R
3) be given. By Lemma 2.2 in [24], there is a matrix-

valued function H = {H j
k } j,k=1,2,3 in Lq,r (R

3) such that h = div H and
‖H‖q,r;R3 ≤ C(q, r)‖h‖−1,q,r;R3 . Then the solution in Lq,r (R

3) of (2.10) is given

by π = ∑3
j,k=1 R j Rk H j

k , where R = F−1 ((iξ/|ξ |)F ·) denotes the Riesz trans-

form. It is well-known that R is bounded on Lq,r (R
3). This completes the proof of

Lemma 2.1. ��
The unique solvability in Lq of (2.11) has been studied by Farwig [7] and by
Kračmar et al. [27] for strong solutions and weak solutions, respectively. The
uniqueness of solutions can be deduced from the following Liouville-type results,
the proofs of which are given in [7, p. 142](see also [9,19]).

Lemma 2.2. (a) If v ∈ S ′(R3) and Lv = 0 in R
3, then v is a polynomial vector

function.
(b) If w ∈ S ′(R3) and −�w + (U − ω ∧ x) · ∇w = 0 in R

3, then w is a
polynomial.

For the existence of weak solutions in Lq of (2.11), we recall the following result
due to Kračmar et al. [27].

Lemma 2.3. Let 1 < q < ∞. Then for every f0 ∈ Ḣ−1
q (R3), there exists a unique

weak solution v ∈ Ḣ1
q (R

3) of (2.11). Moreover, we have

‖∇v‖q;R3 ≤ C‖ f0‖−1,q;R3

for some constant C = C(q).

By real interpolation, we can prove the unique solvability in Lq,r (R
3) of (2.11).

Lemma 2.4. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. Then for every f0 ∈ Ḣ−1
q,r (R

3),

there exists a unique weak solution v ∈ Ḣ1
q,r (R

3) of (2.11). Moreover, we have

‖∇v‖q,r;R3 ≤ C‖ f0‖−1,q,r;R3

for some constant C = C(q, r).

Proof. It follows from Lemma 2.3 that for each 1 < q < ∞, there exists a
bounded linear operator Tq : Ḣ−1

q (R3) → Ḣ1
q (R

3) such that L
(
Tq f0
) = f0 for

all f0 ∈ Ḣ−1
q (R3).

Let 1 < q < ∞ and 1 ≤ r ≤ ∞ be fixed, and let us choose q0, q1, θ, with
1 < q0 < q < q1 < ∞, 0 < θ < 1 and 1/q = (1 − θ)/q0 + θ/q1, so that
Ḣ1

q,r (R
3) = (Ḣ1

q0
(R3), Ḣ1

q1
(R3))θ,r and Ḣ−1

q,r (R
3) = (Ḣ−1

q0
(R3), Ḣ−1

q1
(R3))θ,r .

Suppose that f0 ∈ Ḣ−1
q0
(R3) ∩ Ḣ−1

q1
(R3). Then v = Tq1 f0 − Tq0 f0 satisfies

v ∈ Ḣ1
q0
(R3)+ Ḣ1

q1
(R3) and Lv = 0 in R

3.
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It follows from Lemma 2.2(a) that v is a polynomial. Since ∇v ∈ Lq0(R
3) +

Lq1(R
3),∇v must be identically zero. This shows that Tq0 = Tq1 on Ḣ−1

q0
(R3) ∩

Ḣ−1
q1
(R3). Hence there exists a unique linear operator

T : Ḣ−1
q0
(R3)+ Ḣ−1

q1
(R3) → Ḣ1

q0
(R3)+ Ḣ1

q1
(R3)

such that T = Tqi on Ḣ−1
qi
(R3) for each i = 0, 1. Recall that T |Ḣ−1

qi (R
3)

= Tqi is

bounded from Ḣ−1
qi
(R3) into Ḣ1

qi
(R3) for each i = 0, 1. Therefore by real inter-

polation theory, we deduce that T is bounded from Ḣ−1
q,r (R

3) into Ḣ1
q,r (R

3). On

the other hand, it is obvious that for each f0 ∈ Ḣ−1
q0
(R3)+ Ḣ−1

q1
(R3), v = T f0 is

a distributional solution of Lv = f0 in R
3. This proves the existence and a priori

estimate of a weak solution v ∈ Ḣ1
q,r (R

3) of (2.11) for every f0 ∈ Ḣ−1
q,r (R

3). The

uniqueness of weak solutions in Ḣ1
q,r (R

3) follows immediately from Lemma 2.2(a)

since Ḣ1
q,r (R

3) ⊂ S ′(R3). This completes the proof of Lemma 2.4. ��
We are now ready to prove the unique solvability result in Lq,r for the whole space
problem (SR3).

Proposition 2.1. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. Then for every f ∈ Ḣ−1
q,r (R

3)

and g ∈ Lq,r (R
3) with (U − ω ∧ x)g ∈ Ḣ−1

q,r (R
3), there exists a unique weak

solution (v, π) ∈ Ḣ1
q,r (R

3)× Lq,r (R
3) of (SR3). Moreover, we have

‖∇v‖q,r;R3 + ‖π‖q,r;R3

≤ C
(‖ f ‖−1,q,r;R3 + ‖g‖q,r;R3 + ‖(U − ω ∧ x)g‖−1,q,r;R3

)

for some constant C = C(q, r).

Proof. Let (v, π) be a weak solution in Ḣ1
q,r (R

3)×Lq,r (R
3) of (SR3)with ( f, g) =

(0, 0). Then it follows from (2.10) and (2.11) that�π = 0 and Lv = 0 in R
3. Using

Lemma 2.2 again, we easily deduce that π = 0 and ∇v = 0 in R
3. This proves the

uniqueness assertion.
To prove the existence and a priori estimate, let us suppose that f ∈

Ḣ−1
q,r (R

3), g ∈ Lq,r (R
3) and (U − ω ∧ x)g ∈ Ḣ−1

q,r (R
3). Then

h ≡ f + ∇g − (U − ω ∧ x)g ∈ Ḣ−1
q,r (R

3) (2.12)

and

‖h‖Ḣ−1
q,r (R

3)
≤ ‖ f ‖−1,q,r;R3 + ‖g‖q,r;R3 + ‖(U − ω ∧ x)g‖−1,q,r;R3 .

By Lemma 2.1, there exists a unique π ∈ Lq,r (R
3) such that

�π = div h and ‖π‖q,r;R3 ≤ C‖h‖−1,q,r;R3 . (2.13)

Note that f0 ≡ f −∇π ∈ Ḣ−1
q,r (R

3) and ‖ f0‖Ḣ−1
q,r (R

3)
≤ ‖ f ‖−1,q,r;R3 +‖π‖q,r;R3 .

Hence by Lemma 2.4, there exists a unique v ∈ Ḣ1
q,r (R

3) such that

Lv = f − ∇π and ‖∇v‖q,r;R3 ≤ C
(‖ f ‖−1,q,r;R3 + ‖π‖q,r;R3

)
. (2.14)
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To complete the proof, it now remains to show that div v = g. Set w = div v − g.
Then by virtue of (2.13) and (2.14), we easily have

w ∈ Lq,r (R
3) and −�w + (U − ω ∧ x) · ∇w = 0.

Hence it follows from Lemma 2.2 (b) that w = 0, i.e., div v = g. We have com-
pleted the proof of Proposition 2.1. ��
We finish this section with Galdi and Silvestre’s existence result [15, Theorem 2],
which will be used to prove the energy equality and uniqueness of weak solutions
of the linear problem in exterior domains.

Proposition 2.2. Assume that g ≡ 0. If f = div F ∈ L2(R
3) and (1 + |x |2) F ∈

L∞(R3), then there exists a unique strong solution (v, π) of (SR3) satisfying

v ∈ Ḣ1
2 (R

3), (1 + |x |) v ∈ L∞(R3),

∇2v,∇π ∈ L2(R
3), π ∈ Ls(R

3)
(
s > 3

2

)
.

2.2. The boundary value problem (SD)

We next study the linear problem (SD), where D is a bounded domain in R
3 with

smooth boundary. Since D is bounded, L = −� + (U − ω ∧ x) · ∇ + ω∧ is a
compact perturbation of the Laplace operator −�. Hence the unique solvability in
Lq of (SD) can be easily deduced from classical Cattabriga’s Lq -theory in [5] for
the usual Stokes problem. Then by real interpolation, we can establish the unique
solvability in Lq,r for (SD). To begin with, let us introduce

Ḣ1
q,σ (D) = C∞

0,σ (D)
‖∇·‖p;D =

{
v ∈ Ḣ1

q (D) : div v = 0 in D
}
.

Lemma 2.5. Let 1 < q < ∞. Then for every f ∈ Ḣ−1
q (D), there exists a unique

v ∈ Ḣ1
q,σ (D) such that

∫

D

∇v · ∇ϕ dx +
∫

D

((U − ω ∧ x) · ∇v + ω ∧ v) · ϕ dx = 〈 f, ϕ〉 (2.15)

for all ϕ ∈ C∞
0,σ (D). Moreover, for |U | + |ω| ≤ M < ∞, there is a positive

constant C = C(D, q,M) such that

‖∇v‖q;D ≤ C‖ f ‖−1,q;D . (2.16)

Proof. Note that
∫

D

((U − ω ∧ x) · ∇v + ω ∧ v) · v dx = 0 for all v ∈ Ḣ1
2,σ (D).

Hence by the Lax-Milgram theorem, we deduce that for each f ∈ Ḣ−1
2 (D), there

exists a unique v ∈ Ḣ1
2,σ (D) satisfying (2.15) and (2.16) with C = 1.
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Suppose now that 2 ≤ q < ∞, and let f ∈ Ḣ−1
q (D) be given. Then there exists

a unique v ∈ Ḣ1
2,σ (D) satisfying (2.15) and ‖∇v‖2;D ≤ ‖ f ‖−1,2;D . Let L0 be the

operator defined by L0v = (U − ω ∧ x)⊗ v + v ⊗ (ω ∧ x). Then since div v = 0
and v ∈ Ḣ1

2 (D) ↪→ L6(D), it follows that (U − ω ∧ x) · ∇v + ω ∧ v = div L0v

and L0v ∈ L6(D). Hence it follows from the classical Lq -result due to Cattabriga
[5] that v ∈ Ḣ1

q0
(D), where q0 = min(6, q). If 2 ≤ q ≤ 6, then v ∈ Ḣ1

q,σ (D) and

‖∇v‖q;D ≤ C
(‖L0v‖q;D + ‖ f ‖−1,q;D

)

≤ C(|U | + |ω|)‖v‖q;D + C‖ f ‖−1,q;D

≤ C(|U | + |ω|)‖∇v‖2;D + C‖ f ‖−1,q;D

≤ C(|U | + |ω| + 1)‖ f ‖−1,q;D

for some C = C(D, q). If 6 < q < ∞, then v ∈ Ḣ1
q,σ (D) ↪→ L∞(D) and

‖v‖q;D ≤ ‖v‖6/q
6;D‖v‖1−6/q

∞;D ≤ C‖ f ‖6/q
−1,q;D‖∇v‖1−6/q

q;D ,

so that

‖∇v‖q;D ≤ C
(‖L0v‖q;D + ‖ f ‖−1,q;D

)

≤ C‖ f ‖6/q
−1,q;D‖∇v‖1−6/q

q;D + C‖ f ‖−1,q;D

≤ C‖ f ‖−1,q;D + 1

2
‖∇v‖q;D,

which also implies the estimate (2.16) too. This proves the lemma for the case
that 2 ≤ q < ∞. The remaining case can be easily proved by a duality argument
because the formal adjoint L∗ of L is given by L∗ = −�− (U −ω∧ x) · ∇ −ω∧
which is essentially the same as L . The proof of Lemma 2.5 is complete. ��
Fix a cut-off function ηD ∈ C∞

0 (D) with
∫

D ηD dx = 1. Then by real interpola-
tion, we easily deduce the following basic lemma from the classical result due to
Bogovoskiı̆ [2] (see also [8,10,31]).

Lemma 2.6. For 1 < q < ∞ and 1 ≤ r ≤ ∞, there exists a bounded linear
operator

B = BD : Lq,r (D) → Ḣ1
q,r (D),

called the Bogovoskiı̆ operator on D, such that

B
(
C∞

0 (D)
) ⊂ C∞

0 (D) (2.17)

and

div Bg = g −
⎛

⎝

∫

D

g dx

⎞

⎠ ηD for all g ∈ Lq,r (D).

Remark 2.1. It also follows from (2.17) that B is a bounded operator from L̂q,r (D)
to Ĥ1

q,r (D).
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Using Lemma 2.6, we obtain

Lemma 2.7. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. If f ∈ Ḣ−1
q,r (D) is a vector satisfying

〈 f, w〉 = 0 for all w ∈ C∞
0,σ (D), (2.18)

then there exists a scalar π ∈ Lq,r (D) such that

f = ∇π, i.e., 〈 f, w〉 = −
∫

D

π divw dx for all w ∈ C∞
0 (D)

and

‖π‖q,r;D ≤ C‖ f ‖−1,q,r;D

for some constant C = C(D, q, r).

Proof. Following the proof of [21, Lemma 7], we define π̂ : L̂q ′,r ′(D) → R by

〈π̂ , g〉 = −〈 f,Bg〉 for all g ∈ L̂q ′,r ′(D). (2.19)

By Lemma 2.6 and Remark 2.1, π̂ is a well-defined bounded linear functional
on L̂q ′,r ′(D). Since Lq,r (D) = L̂q ′,r ′(D)∗, there exists π ∈ Lq,r (D) such
that 〈π̂ , g〉 = ∫D πg dx for all g ∈ L̂q ′,r ′(D). Moreover, since |−〈 f,Bg〉| ≤
‖ f ‖Ḣ−1

q,r (D)
‖Bg‖Ĥ1

q′,r ′ (D) ≤ C‖ f ‖Ḣ−1
q,r (D)

‖g‖L̂q′,r ′ (D) for all g ∈ L̂q,r (D), it fol-

lows that ‖π‖Lq,r (D) ≤ C‖ f ‖Ḣ−1
q,r (D)

. Hence to complete the proof, it remains to

prove that f = ∇π . Given w ∈ C∞
0 (D), we set g = divw. It is obvious that

g ∈ C∞
0 (D) and

∫

D g dx = 0. Hence Bg ∈ C∞
0 (D) and div Bg = g = divw.

This implies that Bg − w ∈ C∞
0,σ (D) and < f,Bg − w >= 0. Therefore, using

(2.19) and (2.18), we have

∫

D

π divw dx = 〈π̂ , g〉 = −〈 f,Bg〉 = −〈 f, w〉.

This completes the proof of Lemma 2.7. ��
We are now ready to prove the unique solvability result in Lq,r for the boundary
value problem (SD).

Proposition 2.3. Let 1 < q < ∞ and 1 ≤ r ≤ ∞. Then for every f ∈ Ḣ−1
q,r (D)

and g ∈ Lq,r (D) with
∫

D g dx = 0, there exists a unique weak solution (v, π) ∈
Ḣ1

q,r (D)×Lq,r (D) of (SD)with
∫

D π dx = 0. Moreover, for |U |+|ω| ≤ M < ∞,

there is a positive constant C = C(D, q, r,M) such that

‖∇v‖q,r;D + ‖π‖q,r;D ≤ C
(‖ f ‖−1,q,r;D + ‖g‖q,r;D

)
.
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Proof. Suppose that (v, π) is a weak solution in Ḣ1
q,r (D)× Lq,r (D) of (SD) with

( f, g) = (0, 0). Then since v ∈ Ḣ1
q0,σ

(D) for any 1 < q0 < q, it follows from
Lemma 2.5 that v = 0 and so ∇π = 0. This proves the uniqueness assertion of
the proposition. To prove the existence and a priori estimate, let Sq : Ḣ−1

q (D) →
Ḣ1

q,σ (D), 1 < q < ∞, be the operator such that for each f ∈ Ḣ−1
q (D), v = Sq f

satisfies (2.15) and (2.16). Then Sq is linear and bounded on Ḣ−1
q (D), and Sq0 = Sq1

on Ḣ−1
q0
(D)∩Ḣ−1

q1
(D) for any 1 < q0 < q1 < ∞. Hence by real interpolation, there

exists a bounded linear operator Sq,r : Ḣ−1
q,r (D) → Ḣ1

q,r (D) such that for each f ∈
Ḣ−1

q,r (D), v = Sq,r f satisfies (2.15), div v = 0 and ‖∇v‖q,r;D ≤ C‖ f ‖−1,q,r;D .
By Lemma 2.7, there also exists π ∈ Lq,r (D) such that Lv − f = −∇π and
‖π‖q,r;D ≤ C‖Lv − f ‖−1,q,r;D . This completes the proof of Proposition 2.3 in
case when g = 0. The proof of the general case based on Lemma 2.6 is quite easy
and omitted. ��

3. The linear problem in exterior domains

The purpose of this section is to establish both existence and uniqueness assertions
of Theorem 1.3. To do so, we need to combine the solvability results for the whole
space problem (SR3) and the boundary value problem (SD), by using suitable cut-
off functions. Here we shall closely follow the cut-off procedure developed by
Farwig–Hishida [8].

3.1. Preliminaries

Let R > 5 be a fixed number so large that R
3 \� ⊂ BR−5, where Br = {x ∈ R

3 :
|x | < r} for r > 0. We also set �r = � ∩ Br for any r ≥ R − 5.

The following result was obtained by Kozono and Yamazaki [24, Lemma 2.1]
using the real interpolation theory.

Lemma 3.1. Let D be the whole space R
3, a smooth bounded domain in R

3 or a
smooth exterior domain in R

3.

(a) Let 1 < q < 3 and 1 ≤ r ≤ ∞. Ifw ∈ Ḣ1
q,r (D), thenw|∂D = 0, w ∈ Lq∗,r (D)

and ‖w‖q∗,r;D ≤ C‖∇w‖q,r;D for some constant C = C(q, r) > 0, where
q∗ = 3q/(3 − q) is the Sobolev exponent to q.

(b) If w ∈ Ḣ1
3,1(D), then w|∂D = 0, w ∈ L∞(D) ∩ C(D), ‖w‖∞;D ≤

1
3‖∇w‖3,1;D and w(x) → 0 uniformly as |x | → ∞.

Using Lemma 3.1, we first obtain the following result for our cut-off techniques.

Lemma 3.2. Let ψ ∈ C∞
0 (BR) be a cut-off function with ψ = 1 in BR−5. Suppose

that 1 < q < ∞ and 1 ≤ r ≤ ∞.
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(a) For every v ∈ Ḣ1
q,r (�), we have

ψv ∈ Ḣ1
q,r (�R), (1 − ψ)v ∈ Ḣ1

q,r (R
3)

and

‖∇(ψv)‖q,r;�R + ‖∇ ((1 − ψ)v) ‖q,r;R3 ≤ C‖∇v‖q,r

for some constant C = C(�,ψ, q, r) > 0.
(b) For every f ∈ Ḣ−1

q,r (�), we have

ψ f ∈ Ḣ−1
q,r (�R), (1 − ψ) f ∈ Ḣ−1

q,r (R
3)

and

‖ψ f ‖−1,q,r;�R + ‖(1 − ψ) f ‖−1,q,r;R3 ≤ C‖ f ‖−1,q,r

for some constant C = C(�,ψ, q, r) > 0.
(c) Assume further that either 1 < q < 3, 1 ≤ r ≤ ∞ or (q, r) = (3, 1). Then for

every v1 ∈ Ḣ1
q,r (�R) and v2 ∈ Ḣ1

q,r (R
3), we have

v ≡ ψv1 + (1 − ψ)v2 ∈ Ḣ1
q,r (�)

and

‖∇v‖q,r ≤ C
(‖∇v1‖q,r;�R + ‖∇v2‖q,r;R3

)

for some constant C = C(�,ψ, q, r) > 0.

Proof. (a) Assume that 1 < q < ∞, and let v ∈ Ḣ1
q (�) be fixed. Then since

v = 0 on ∂�, there holds the Poincaré inequality

‖v‖q;�R ≤ C‖∇v‖q;�R

with C depending only on � and q. Using this, we have

‖∇(ψv)‖q;�R + ‖∇ ((1 − ψ)v) ‖q;R3 ≤ C
(‖v‖q;�R + ‖∇v‖q;�

) ≤ C‖∇v‖q .

Moreover, since C∞
0 (D) is dense in Ḣ1

q (D), where D = �R,� or R
3, a stan-

dard density argument allows us to deduce that if v ∈ Ḣ1
q (�), then ψv ∈

Ḣ1
q (�R) and (1 − ψ)v ∈ Ḣ1

q (R
3). This proves (a) for the special case when

1 < q = r < ∞. The general case follows then by real interpolation.
(b) By real interpolation, it suffices to prove (b) for the special case when 1 <

q = r < ∞. Suppose first that 3 < q < ∞, and let f ∈ Ḣ−1
q (�). Then by

Sobolev’s inequality(see Lemma 3.1), we have

< (1 − ψ) f, v2 > =< f, (1 − ψ)v2 >

≤ ‖ f ‖−1,q‖∇ ((1 − ψ)v2) ‖q ′

≤ C‖ f ‖−1,q
(‖v2‖q ′;�R + ‖∇v2‖q ′;�

)

≤ C‖ f ‖−1,q‖∇v2‖q ′;R3 .
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for all v2 ∈ C∞
0 (R

3). Since C∞
0 (R

3) is dense in Ḣ1
q ′(R3), it follows that

(1 − ψ) f ∈ Ḣ−1
q (R3) and ‖(1 − ψ) f ‖−1,q;R3 ≤ C‖ f ‖−1,q . Suppose next

that 1 < q ≤ 3, and let f ∈ Ḣ−1
q (�). Denote by D0 the set of all ϕ ∈ C∞

0 (R
3)

with
∫

�R
ϕ dx = 0, so that the Poincaré inequality ‖ϕ‖q ′;�R ≤ C‖∇ϕ‖q ′;�R

holds for all v2 ∈ D0. Then for all v2 ∈ D0, we have

< (1 − ψ) f, v2 > =< f, (1 − ψ)v2 >

≤ ‖ f ‖−1,q‖∇ ((1 − ψ)v2) ‖q ′

≤ C‖ f ‖−1,q‖∇v2‖q ′;R3

But since 3 ≤ q ′ < ∞, it follows from the proof of [23, Lemma 2.5] (see
also [24, Lemma 2.3]) that D0 is dense in Ḣ1

q ′(R3). This completes the proof
of the assertions for (1 − ψ) f for the case 1 < q = r < ∞. The general case
follows immediately by real interpolation. The assertions forψ f can be proved
similarly.

(c) This can be proved easily by using the embedding Ḣ1
q,r (D) ↪→ Lq,r (�R),

where D = �R or R
3. Indeed, if v2 ∈ Ḣ1

3,1(R
3), then by Lemma 3.1 (b), we

have

‖∇ ((1 − ψ)v2) ‖3,1;� ≤ C
(‖v2‖3,1;�R + ‖∇v2‖3,1;�

)

≤ C
(‖v2‖∞;�R + ‖∇v2‖3,1;�

) ≤ C‖∇v2‖3,1;R3 .

The other assertions are proved similarly. This completes the proof of Lemma
3.2. ��

3.2. Proofs of the uniqueness and a priori estimate

We first prove the uniqueness assertion and a priori estimate of Theorem 1.3. In
fact, the uniqueness assertion of Theorem 1.3 is an immediate consequence of the
following result, which is inspired by [15, Theorem 3] and [8, Propositions 5.1 and
5.2].

Lemma 3.3. For each i = 1, 2, let (qi , ri ) satisfy either 1 < qi < 3, 1 ≤ ri ≤ ∞
or (qi , ri ) = (3, 1). Suppose that

⎧
⎨

⎩

f = div F ∈ L2(�), (1 + |x |2) F ∈ L∞(�);
v ∈ Ḣ1

q1,r1
(�)+ Ḣ1

q2,r2
(�), π ∈ Lq1,r1(�)+ Lq2,r2(�);

Lv + ∇π = f, div v = 0 in �.
(3.20)

Then we have

v ∈ Ḣ1
2 (�), (1 + |x |) v ∈ L∞(�),

∇2v,∇π ∈ L2(�), π ∈ Ls(�)
(
s > 3

2

) (3.21)

and
∫

�

|∇v|2 dx = −
∫

�

F · ∇v dx . (3.22)

It thus follows that if F ≡ 0, then (v, π) = (0, 0) in �.
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Proof. It follows from (3.20) that ∇v ∈ Lq,loc(�) for any q < min(q1, q2). Hence
applying a local regularity theory for the Stokes equations (see [10] for instance),
we easily deduce that

∇v, π ∈ H1
2,loc(�); that is, ∇v, ∇2v, π, ∇π ∈ L2,loc(�). (3.23)

Choosing a fixed cut-off function ψ ∈ C∞
0 (R

3) such that

ψ(x) =
{

1, |x | ≤ R − 3,
0, |x | ≥ R − 2,

(3.24)

we define

v = (1 − ψ) v + B(v · ∇ψ) and π = (1 − ψ)π,

where B is the Bogovoskiı̆ operator on the annulus BR−1 \ B R−4; see Lemma 2.6.
Then it follows from (3.20), (3.23), Lemma 3.2(a) and Lemma 2.6 that

⎧
⎪⎨

⎪⎩

v ∈
[

Ḣ1
q1,r1

(R3)+ Ḣ1
q2,r2

(R3)
]

∩ H2
2,loc(R

3),

π ∈ [Lq1,r1(R
3)+ Lq2,r2(R

3)
] ∩ H1

2,loc(R
3);

Lv + ∇π = f , div v = 0 in R
3,

(3.25)

where

f = (1 − ψ) f + 2∇ψ · ∇v + [�ψ − (U − ω ∧ x) · ∇ψ] v

−π∇ψ + LB(v · ∇ψ).
Note here that f = f 1+ f 2, f 1 = div ((1−ψ)F)∈ L2(R

3), (1+|x |2)((1−ψ)F)∈
L∞(R3), f 2 ∈ L6(R

3) and supp f 2 ⊂ B R−2. Setting F2 = ∇ ((1/4π |x |) ∗ f 2
)
,

we easily deduce that f 2 = div F2 and (1 + |x |2)F2 ∈ L∞(R3); see [15, p. 396]
e.g. Hence by virtue of Proposition 2.2, there exists a unique pair (ṽ, π̃) such that

⎧
⎨

⎩

ṽ ∈ Ḣ1
2 (R

3), (1 + |x |) ṽ ∈ L∞(R3),

∇2ṽ, ∇π̃ ∈ L2(R
3), π̃ ∈ Ls(R

3)
(
s > 3

2

) ;
L ṽ + ∇π̃ = f , div ṽ = 0 in R

3.

(3.26)

Let us now define (v0, π0) = (v − ṽ, π − π̃). Then by virtue of (3.25) and (3.26),
we have

⎧
⎨

⎩

v0 ∈ Ḣ1
q1,r1

(R3)+ Ḣ1
q2,r2

(R3)+ Ḣ1
2 (R

3);
π0 ∈ Lq1,r1(R

3)+ Lq2,r2(R
3)+ L2(R

3);
Lv0 + ∇π0 = 0, div v0 = 0 in R

3.

Since div v0 = 0, it follows that �π0 = 0 in R
3. Hence using Lemma 2.2, we

easily deduce that π0 = 0 and v0 = 0. This proves that (v, π) = (ṽ, π̃) in R
3.

Moreover, since (v, π) = (v, π) for |x | ≥ R − 2, we conclude from (3.23) and
(3.26) that (v, π) satisfies the regularity (3.21).

Next, to prove the energy equality (3.22), we apply the method of cut-off func-
tions with an anisotropic decay. Following Galdi-Silvestre [15, Lemma 3], we
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choose a number α > 1 and a non-increasing function ψ̃ ∈ C∞([0,∞)) with
ψ̃(t) = 1 for 0 ≤ t ≤ 1 and ψ̃(t) = 0 for t ≥ 2. For any � ≥ R, we then define

ψ�(x) = ψ̃

⎛

⎝

√

x2
1 + x2

2

�2 + x2
3

�2α

⎞

⎠ for x ∈ R
3.

By direct calculations, we easily obtain

(ω ∧ x) · ∇ψ�(x) = −cx2
∂ψ�

∂x1
(x)+ cx1

∂ψ�

∂x2
(x) = 0,

∣
∣
∣
∣
∂ψ�

∂x1
(x)

∣
∣
∣
∣+
∣
∣
∣
∣
∂ψ�

∂x2
(x)

∣
∣
∣
∣ ≤

C

�
and

∣
∣
∣
∣
∂ψ�

∂x3
(x)

∣
∣
∣
∣ ≤

C

�α
(3.27)

for all x ∈ R
3, where the constant C depends only on α and ψ . Hence multiplying

the system in (3.20) by ψ� v and integrating by parts, we have
∫

�

|∇v|2ψ� dx +
∫

��

(∇v · ∇ψ�) · v − 1

2
|v|2U · ∇ψ� dx

=
∫

��

π(v · ∇ψ�)− (F · ∇ψ�) · v dx −
∫

�

(F · ∇v)ψ� dx,

where �� denotes the support of ∇ψ�. It follows immediately from (3.21) that
∫

�

|∇v|2ψ� dx →
∫

�

|∇v|2 dx and
∫

�

(F · ∇v)ψ� dx →
∫

�

(F · ∇v) dx

as � → ∞. To treat the remaining terms, we observe that

�� ⊂
{

x = (x ′, x3) ∈ R
3 : �2 ≤ |x ′|2 + �2−2αx2

3 ≤ 4�2
}

⊂
{

x : |x3| ≤ 2�α, �2 − �2−2αx2
3 ≤ |x ′|2 ≤ 4�2 − �2−2αx2

3

}
.

Hence for all large � with ρ2−2α < 1/2

∫

��

1

|x |2 dx ≤ 2

2�α∫

0

4�2−�2−2αx2
3∫

�2−�2−2αx2
3

2πr

r2 + x2
3

drdx3

= 2π

2�α∫

0

ln

(
4�2 + (1 − �2−2α)x2

3

�2 + (1 − �2−2α)x2
3

)

dx3

≤ 2π

2�α∫

0

ln

(
4�2 + x2

3/2

�2 + x2
3/2

)

dx3
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= 2π

2�α−1
∫

0

ln

(
4 + t2/2

1 + t2/2

)

� dt

≤ 2πρ

∞∫

0

ln

(
4 + t2/2

1 + t2/2

)

dt = C�,

where C is an absolute constant. Using this estimate together with (3.21) and (3.27),
we thus obtain
∫

��

∣
∣(∇v · ∇ψ�) · v∣∣+ ∣∣π(v · ∇ψ�)

∣
∣+ ∣∣(F · ∇ψ�) · v∣∣ dx

≤ C

⎛

⎜
⎝

∫

��

|∇ψ�|2|v|2 dx

⎞

⎟
⎠

1/2

≤ C

�

⎛

⎜
⎝

∫

��

1

|x |2 dx

⎞

⎟
⎠

1/2

≤ C

�1/2 → 0

and
∫

��

|v|2 ∣∣U · ∇ψ�
∣
∣ dx ≤ C

�α

∫

��

1

|x |2 dx ≤ C

�α−1 → 0

as � → ∞. This proves the energy equality (3.22). We have completed the proof
of Lemma 3.3.

We next prove the a priori estimate of Theorem 1.3.

Lemma 3.4. Let (q, r) satisfy either 1 < q < 3, 1 ≤ r ≤ ∞ or (q, r) = (3, 1).
Then for M > 0, there is a positive constant C = C(�, q, r,M) such that if
|ω| + |U | ≤ M, f ∈ Ḣ−1

q,r (�), g ∈ Lq,r (�) and (U − ω ∧ x)g ∈ Ḣ−1
q,r (�), and if

(v, π) is a weak solution of (S) in Ḣ1
q,r (�)× Lq,r (�), then

‖∇v‖q,r + ‖π‖q,r ≤ C
(‖ f ‖−1,q,r + ‖g‖q,r + ‖(U − ω ∧ x)g‖−1,q,r

)
. (3.28)

Proof. Let us define

{
v1 = ψv,

π1 = ψπ
and

{
v2 = (1 − ψ)v,

π2 = (1 − ψ)π,

where ψ is the same cut-off function as in the proof of Lemma 3.3. Then it follows
from Lemma 3.2(a) that for each i = 1, 2, (vi , πi ) ∈ Ḣ1

q,r (�i )× Lq,r (�i ), where
�1 = �R and �2 = R

3. Moreover, the pair (vi , πi ) satisfies

{
Lvi + ∇πi = fi in �i ,

div vi = gi in �i ,
((S)�i )
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where

f1 = ψ f + f0, f2 = (1 − ψ) f − f0,

f0 = −2∇ψ · ∇v + [−�ψ + (U − ω ∧ x) · ∇ψ] v + π∇ψ,
g1 = ψ g + g0, g2 = (1 − ψ)g − g0 and g0 = ∇ψ · v.

By virtue of Propositions 2.1 and 2.3, we obtain

‖∇v1‖q,r;�R + ‖π1‖q,r;�R

≤ C

⎛

⎜
⎝‖ f1‖−1,q,r;�R + ‖g1‖q,r;�R +

∣
∣
∣
∣
∣
∣
∣

∫

�R

π1 dx

∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎠

(3.29)

and

‖∇v2‖q,r;R3 + ‖π2‖q,r;R3

≤ C
(‖ f2‖−1,q,r;R3 + ‖g2‖q,r;R3 + ‖(U − ω ∧ x)g2‖−1,q,r;R3

)
.
(3.30)

Since ∇ψ is supported in AR = BR \ B R−5, it follows that

supp f0 ∪ supp g0 ⊂ AR .

Moreover, adapting the proof of Lemma 3.2, we deduce that

‖ f0‖−1,q,r;R3 ≤ C
(‖v‖q,r;�R + ‖π‖−1,q,r;�R

)

and

‖g0‖−1,q,r;R3 + ‖(U − ω ∧ x)g0‖−1,q,r;R3 ≤ C‖v‖q,r;�R .

Using these together with Lemma 3.2 (b), we thus have

‖ f1‖−1,q,r;�R + ‖ f2‖−1,q,r;R3 +

∣
∣
∣
∣
∣
∣
∣

∫

�R

π1 dx

∣
∣
∣
∣
∣
∣
∣

≤ C
(‖ f ‖−1,q,r + ‖v‖q,r;�R + ‖π‖−1,q,r;�R

)

(3.31)

and

‖g1‖−1,q,r;�R + ‖g2‖−1,q,r;R3 + ‖(U − ω ∧ x)g2‖−1,q,r;R3

≤ C
(‖g‖q,r + ‖(U − ω ∧ x)g‖−1,q,r + ‖v‖q,r;�R

)
.

(3.32)

Substituting (3.31) and (3.32) into (3.29) and (3.30), we have derived

‖∇v‖q,r + ‖π‖q,r ≤ C
(‖ f ‖−1,q,r + ‖g‖q,r + ‖(U − ω ∧ x)g‖−1,q,r

+‖v‖q,r;�R + ‖π‖−1,q,r;�R

)
.

(3.33)

We can now deduce the desired estimate (3.28) from (3.33) by using the unique-
ness result, Lemma 3.3. To do so, we argue by contradiction. Suppose thus that



On the stationary Navier–Stokes 335

there are sequences {Un}, {ωn} ⊂ R
3, { fn} ⊂ Ḣ−1

q,r (�), {gn} ⊂ Lq,r (�){vn} ⊂
Ḣ1

q,r (�) and {πn} ⊂ Lq,r (�) such that

|Un| + |ωn| ≤ M; Lnvn + ∇πn = fn, div vn = gn in �,

where Lnv = −�v + (Un − ωn ∧ x) · ∇v + ωn ∧ v, and

1 = ‖∇vn‖q,r + ‖πn‖q,r ≥ n
(‖ fn‖−1,q,r + ‖gn‖q,r + ‖(Un − ωn ∧ x)gn‖−1,q,r

)
.

Then from the a priori estimate (3.33), we deduce that

1 ≤ C

(
1

n
+ ‖vn‖q,r;�R + ‖πn‖−1,q,r;�R

)

. (3.34)

Moreover, by standard compactness results, we may assume that {(Un, ωn)} →
{(U, ω)} in R

3 × R
3 and {(vn, πn)} → {(v, π)} in the weak-∗ topology of

Ḣ1
q,r (�) × Lq,r (�). It is then easy to check that (v, π) is a weak solution in

Ḣ1
q,r (�)× Lq,r (�) of (S) with the trivial data ( f, g) = (0, 0). Hence by Lemma

3.3, we must have (v, π) = (0, 0). However, since the embeddings Ḣ1
q,r (�) ↪→

Lq,r (�R) ↪→ Ḣ−1
q,r (�R) are compact, it follows that {(vn, πn)} → {(v, π)}

strongly in Lq,r (�R)× Ḣ−1
q,r (�R). Hence letting n → ∞ in (3.34), we obtain

1 ≤ C
(‖v‖q,r;�R + ‖π‖−1,q,r;�R

)
,

which is a contradiction. The proof of Lemma 3.4 is complete.

3.3. Proof of the existence

We finally prove the existence assertion of Theorem 1.3 by using suitable cut-off
functions; see also [8], [17] and [19].

Letψ be the cut-off function satisfying (3.24). We also choose cut-off functions
φ1, φ2 ∈ C∞(R3) such that

φ1(x) =
{

1, |x | ≤ R − 2,
0, |x | ≥ R − 1

and φ2(x) =
{

0, |x | ≤ R − 4,
1, |x | ≥ R − 3.

(3.35)

Then it is obvious that ψφ1 + (1 − ψ)φ2 = 1 on R
3 and ∇ψ,∇φ1,∇φ2 are all

supported in the annulus AR = BR \ B R−5.

Let (q, r) be a fixed pair satisfying one of the three conditions in (1.7). Denote by
X the space of all pairs ( f, g) ∈ Ḣ−1

q,r (�)× Lq,r (�)with (U −ω∧x)g ∈ Ḣ−1
q,r (�).

It is easy to show that X is a Banach space equipped with the norm

‖( f, g)‖X = ‖ f ‖−1,q,r + ‖g‖q,r + ‖(U − ω ∧ x)g‖−1,q,r .

Let ( f, g) ∈ X be given. For each i = 1, 2, we denote by (Si ( f, g), Pi ( f, g)) the
solution (vi , πi ) in Ḣ1

q,r (�i )× Lq,r (�i ) of (S)�i with data ( fi , gi ) = (φi f, φi g),
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where �1 = �R and �2 = R
3 are as in the proof of Lemma 3.4. Then in view of

Propositions 2.1, 2.3 and Lemma 3.2, we have

2∑

i=1

(‖∇Si ( f, g)‖q,r;�i + ‖Pi ( f, g)‖q,r;�i

) ≤ C‖( f, g)‖X . (3.36)

We define a parametrix, an approximate solution of (S), as

S( f, g) := ψS1( f, g)+ (1 − ψ)S2( f, g),

P( f, g) := ψP1( f, g)+ (1 − ψ)P2( f, g).

It then follows from Lemma 3.2 and (3.36) that

(S( f, g), P( f, g)) ∈ Ḣ1
q,r (�)× Lq,r (�)

and

‖∇S( f, g)‖q,r + ‖P( f, g)‖q,r ≤ C‖( f, g)‖X (3.37)

By a direct calculation, we also obtain

{
L S( f, g)+ ∇ P( f, g) = f + E1( f, g) in �,
div S( f, g) = g + E2( f, g) in �,

where

E1( f, g) = −2∇ψ · ∇(S1( f, g)− S2( f, g))+ (P1( f, g)− P2( f, g))∇ψ
+ ((U − ω ∧ x) · ∇ψ −�ψ) (S1( f, g)− S2( f, g))

and

E2( f, g) = ∇ψ · (S1( f, g)− S2( f, g)).

We now show that E = (E1, E2) is a compact linear operator on X . To begin
with, we observe that

supp E1( f, g) ∪ supp E2( f, g) ⊂ supp ∇ψ ⊂ AR,

which implies in particular that

‖E2( f, g)‖q,r = ‖E2( f, g)‖q,r;AR ≤ C‖∇E2( f, g)‖q,r;AR . (3.38)

On the other hand, it follows from Lemma 3.1 that if 1 < s < 3 or (s, t) = (3, 1),
then

‖ϕ‖s,t;AR ≤
{

C‖∇ϕ‖s,t for all ϕ ∈ Ḣ1
s,t (�),

C‖∇ϕ‖s,t;�i for all ϕ ∈ Ḣ1
s,t (�i ); i = 1, 2.

(3.39)
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Using (3.39) and (3.36), we have

‖E1( f, g)‖q,r;AR + ‖∇E2( f, g)‖q,r;AR

≤ C‖∇(S1( f, g)− S2( f, g))‖q,r;AR + C‖P1( f, g)− P2( f, g)‖q,r;AR

+ C‖S1( f, g)− S2( f, g)‖q,r;AR

≤
2∑

i=1

(‖∇Si ( f, g)‖q,r;�i + ‖Pi ( f, g)‖q,r;�i

) ≤ C‖( f, g)‖X .

(3.40)

Let us then choose any ξ ∈ C∞
0 (AR)with ξ = 1 on supp ∇ψ . Recall also from

(1.7) that (q ′, r ′) indeed satisfies either 1 < q ′ < 3 or (q ′, r ′) = (3, 1). Hence
using (3.39) again, we have

〈E1( f, g), ϕ〉 = 〈E1( f, g), ξϕ〉
≤ ‖E1( f, g)‖−1,q,r;AR ‖∇(ξϕ)‖q ′,r ′;AR

≤ C‖E1( f, g)‖−1,q,r;AR

(‖ϕ‖q ′,r ′;AR + ‖∇ϕ‖q ′,r ′
)

≤ C‖E1( f, g)‖−1,q,r;AR ‖∇ϕ‖q ′,r ′

and similarly

〈(U − ω ∧ x)E2( f, g), ϕ〉 ≤ C‖E2( f, g)‖−1,q,r;AR ‖∇ϕ‖q ′,r ′

for all ϕ ∈ C∞
0 (�), which implies that

‖E1( f, g)‖−1,q,r + ‖(U − ω ∧ x)E2( f, g)‖−1,q,r

≤ C
(‖E1( f, g)‖−1,q,r;AR + ‖E2( f, g)‖−1,q,r;AR

)
.

(3.41)

Finally, since the embeddings Ḣ1
q,r (AR) ↪→ Lq,r (AR) ↪→ Ḣ−1

q,r (AR) are compact,
it follows from (3.38), (3.40) and (3.41) that E maps X into X compactly and of
course linearly.

We now show that I d + E is injective on X .
Suppose that ( f, g) ∈ X and (I d+E)( f, g) = 0. Then since (S( f, g), P( f, g))

is a solution in Ḣ1
q,r (�) × Lq,r (�) of (S) with trivial data, it follows from the

uniqueness result in Lemma 3.3 that (S( f, g), P( f, g)) = (0, 0) in �. From the
definitions of S( f, g) and P( f, g), it follows that (S1( f, g), P1( f, g)) = (0, 0) in
�R−3 and (S2( f, g), P2( f, g)) = (0, 0) in R

3 \ B R−2. Arguing as in the proof of
Lemma 3.2, we easily deduce that (Si ( f, g), Pi ( f, g)) ∈ Ḣ1

q,r (BR) × Lq,r (BR)

for each i = 1, 2, where (S1( f, g), P1( f, g)) is extended to BR by defining zero
outside �R . Moreover, by the definitions of Si ( f, g) and Pi ( f, g), we deduce that
( f1, g1) = (0, 0) in�R−3 and ( f2, g2) = (0, 0) in R

3 \ B R−2. It then follows from
(3.35) that ( f, g) = (0, 0) in�R−3 ∪ (� \ B R−2) and ( f1, g1) = ( f2, g2) = ( f, g)
in �R . Hence both (S1( f, g), P1( f, g)) and (S2( f, g), P2( f, g)) are solutions in
Ḣ1

q,r (BR)× Lq,r (BR) of the problem

Lv + ∇π = f, div v = g in BR; v = 0 on ∂BR .

It thus follows from Proposition 2.3 that S1( f, g) = S2( f, g) and ∇ P1( f, g) =
∇ P2( f, g) in BR . Finally, using the definitions of S( f, g) and P( f, g) again, we
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deduce that Si ( f, g) = S( f, g) = (0, 0) and Pi ( f, g) = P( f, g) = 0 in �R for
i = 1, 2. This allows us to conclude that ( f, g) = (0, 0) in�R and so in the whole
domain �. We have shown the injectivity of I d + E on X . Therefore, it follows
from the Fredholm theory that I d + E has a bounded inverse.

Given ( f, g) ∈ X, we define ( f , g) = (I d + E)−1( f, g). Then a solution in
Ḣ1

q,r (�)× Lq,r (�) of (S) is given by (v, π) = (S( f , g), P( f , g)). This proves the
existence assertion of Theorem 1.3. We have completed the proof of Theorem 1.3.
��

4. Proofs of the main theorems

To begin with, we deduce two useful results from Theorem 1.3 and Lemma 3.3.

Theorem 4.1. Assume that g ≡ 0, and let (q, r) satisfy one of the three conditions
in (1.7). Then for every f = div F with F ∈ �q,r , there exists a unique weak
solution (v, π) ∈ Vq,r ×�q,r of (S).

Proof. The uniqueness assertion follows immediately from Theorem 1.3(or Lemma
3.3). To prove the existence, we use Theorem 1.3 again to deduce the existence of
two weak solutions (v1, π1) ∈ Ḣ1

3/2,∞(�)× L3/2,∞(�) and (v2, π2) ∈ Ḣ1
q,r (�)×

Lq,r (�) of (S). Then (v, π) = (v1 − v2, π1 − π2) satisfies

{
v ∈ Ḣ1

3/2,∞(�)+ Ḣ1
q,r (�), π ∈ L3/2,∞(�)+ Lq,r (�);

Lv + ∇π = 0, div v = 0 in �.

Hence it follows from Lemma 3.3 that (v, π) = (0, 0) and so (v1, π1) = (v2, π2) ∈
Vq,r ×�q,r . This completes the proof of Theorem 4.1.

Lemma 4.1. Assume that g ≡ 0, f = div F and F ∈ L2(�). If (v, π) ∈ Ḣ1
2 (�)×

L2(�) is the weak solution of (S) obtained by Theorem 1.3, then v satisfies the
energy equality:

∫

�

|∇v|2 dx = −
∫

�

F · ∇v dx .

Proof. Choose a sequence {Fk} in C∞
0 (�) with Fk → F in L2(�). Then by virtue

of Theorem 1.3, there exists a unique weak solution (vk, πk) ∈ Ḣ1
2 (�) × L2(�)

of (S) with F replaced by Fk . Moreover, there is a constant C = C(�, |U | + |ω|)
such that ‖∇(vk − v)‖2 ≤ C‖Fk − F‖2. On the other hand, since Fk ∈ C∞

0 (�), it
follows from Lemma 3.3 that

∫

�
|∇vk |2 dx = − ∫

�
Fk · ∇vk dx . Letting k → ∞,

we obtain the energy equality.

To prove the main results, we also need Kozono and Yamazaki’s result
[26, Proposition 2.1] for Hölder inequalities in Lorentz spaces.
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Lemma 4.2. Let 1 < q, q1, q2 < ∞, 1 ≤ r1, r2 ≤ ∞ and 1/q = 1/q1 + 1/q2.
If f ∈ Lq1,r1(�) and g ∈ Lq2,r2(�), then f g ∈ Lq,r (�), where r = min(r1, r2),

and

‖ f g‖q,r ≤ C‖ f ‖q1,r1‖g‖q2,r2

for some constant C = C(q1, r1, q2, r2) > 0.

An immediate consequence of Lemmas 4.1 and 4.2 is the following bilinear
estimate whose easy proof is omitted.

Lemma 4.3. Suppose that 1 < q < 3, 1 ≤ r ≤ ∞ and v ∈ L3,∞(�). Then for
every w ∈ Ḣ1

q,r (�), we have

v ⊗ w ∈ Lq,r (�) and ‖v ⊗ w‖q,r ≤ C‖v‖3,∞‖∇w‖q,r

for some constant C = C(q, r) > 0. Moreover, if div v = 0 in� and w ∈ Ḣ1
2 (�),

then
∫

�

v ⊗ w : ∇w dx = 0.

We can now prove an existence result which will play a crucial role in our proofs
of both Theorems 1.1 and 1.2.

Proposition 4.1. Suppose that either (q, r) = (3/2,∞) or 3/2 < q < 3, 1 ≤
r ≤ ∞. Then there are positive constants δ′0 = δ′0(�, q, r),C0 = C ′

0(�) and
C ′′

0 = C ′′
0 (�, q, r) such that if F ∈ �q,r and |U | + |ω| + ‖F‖3/2,∞ ≤ δ′0, then

there exists at least one weak solution (v, π) ∈ Vq,r ×�q,r of (NS ) satisfying the
estimates

‖v‖3,∞ + ‖∇v‖3/2,∞ + ‖π‖3/2,∞ ≤ C ′
0

(|U | + |ω| + ‖F‖3/2,∞
)

(4.42)

and

‖v‖q∗,r + ‖∇v‖q,r + ‖π‖q,r ≤ C ′′
0

(|U | + |ω| + ‖F‖q,r
)
. (4.43)

Proof. We may assume that |U | + |ω| + ‖F‖3/2,∞ ≤ 1. Let v ∈ Vq,r be fixed.
Then since v ∈ Ḣ1

3/2,∞(�) ↪→ L3,∞(�), it follows from (1.3), (1.4), Lemmas 4.3
and 3.1 that

‖Qb(v)‖3/2,∞ ≤ C
(
|U | + |ω| + ‖∇v‖2

3/2,∞
)

(4.44)

and

‖Qb(v)‖q,r ≤ Cq,r (|U | + |ω|)+ Cq,r
(|U | + |ω| + ‖∇v‖3/2,∞

) ‖∇v‖q,r (4.45)
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for some C = C(�) and C = C(�, q, r). Hence by Theorem 4.1, there exists a
unique v = T (v) ∈ Vq,r such that for some unique π ∈ �q,r (�), the pair (v, π)
is a weak solution of the following linear problem:

⎧
⎪⎪⎨

⎪⎪⎩

Lv + ∇π = div (F − Qb(v)) in �,
div v = 0 in �,

v = 0 on ∂�,
v(x) → 0 as |x | → ∞.

(4.46)

Moreover, it follows from Theorem 1.3, (4.44) and (4.45) that for all v, v1, v2 ∈
Vq,r , we have

‖∇T (v)‖3/2,∞ ≤ C‖F − Qb(v)‖3/2,∞
≤ C∗ (|U | + |ω| + ‖F‖3/2,∞

)+ C∗‖∇v‖2
3/2,∞,

‖∇T (v)‖q,r ≤ C‖F − Qb(v)‖q,r

≤ C∗
q,r

(|U | + |ω| + ‖F‖q,r
)

+C∗
q,r

(|U | + |ω| + ‖∇v‖3/2,∞
) ‖∇v‖q,r

and

‖T (v1) −T (v2)‖Vq,r

≤ C‖Qb(v1)− Qb(v2)‖�q,r

≤ C∗
q,r

(|U | + |ω| + ‖∇v1‖3/2,∞ + ‖∇v2‖3/2,∞
) ‖v1 − v2‖Vq,r

for some constants C∗ = C∗(�) and C∗
q,r = C∗

q,r (�, q, r) with C∗
q,r ≥ C∗ > 1.

Let us now suppose that

|U | + |ω| + ‖F‖3/2,∞ < δ′0 ≡ 1

8

(
C∗

q,r

)−2
, (4.47)

and let B be the closed set of all v ∈ Vq,r such that

‖∇v‖3/2,∞ ≤ 2C∗ (|U | + |ω| + ‖F‖3/2,∞
)

and

|U | + |ω| + ‖∇v‖q,r ≤ 2C∗
q,r

(|U | + |ω| + ‖F‖q,r
)
.

Then for all v, v1, v2 ∈ B, we easily obtain

‖∇T (v)‖3/2,∞ ≤ 2C∗ (|U | + |ω| + ‖F‖3/2,∞
)
,

‖∇T (v)‖q,r ≤ 2C∗
q,r

(|U | + |ω| + ‖F‖q,r
)

and

‖T (v1)− T (v2)‖Vq,r ≤ 1

2
‖v1 − v2‖Vq,r .
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Therefore, T is a contraction on the complete metric space B and thus has a fixed
point v in B by the Banach fixed point theorem.

To complete the proof, it remains to derive the estimates (4.42) and (4.43) for
the solution (v, π) of (NS), where π is the pressure associated with v. To do so,
we can argue as before using Theorem 1.3, (4.44), (4.45) and (4.47) together with
the fact that v = T (v) ∈ B. Indeed, we have

‖v‖3,∞ + ‖∇v‖3/2,∞ + ‖π‖3/2,∞ ≤ C‖F − Qb(v)‖3/2,∞
≤ C
(|U | + |ω| + ‖F‖3/2,∞

)+ C‖∇v‖2
3/2,∞

≤ C ′
0

(|U | + |ω| + ‖F‖3/2,∞
)

for some C ′
0 = C ′

0(�) > 0,which proves (4.42). The proof of (4.43) is similar and
omitted. This completes the proof of Proposition 4.1.

We are now ready to prove Theorems 1.1, 1.2 and their corollaries.

Proof of Theorem.1.1. Let δ0 be any positive number less than or equal to the small
constant δ′0 = δ′0(�, 3/2,∞) in Proposition 4.1. Suppose that F ∈ L3/2,∞(�) =
�3/2,∞ and |U | + |ω| + ‖F‖3/2,∞ ≤ δ0. Then by Proposition 4.1, there exists at
least one solution (v1, π1) ∈ Ḣ1

3/2,∞(�)× L3/2,∞(�) of (NS) satisfying the esti-

mate (4.42). Let (v2, π2) ∈ Ḣ1
3/2,∞(�)× L3/2,∞(�) be a solution of (NS) which

is possibly different from (v1, π1). Then arguing as in the proof of Proposition 4.1,
we have

‖∇(v1 − v2)‖3/2,∞ + ‖π1 − π2‖3/2,∞ ≤ C‖Qb(v1)− Qb(v2)‖3/2,∞

for some C = C(�). By Lemma 4.3, we also have

C‖Qb(v1)− Qb(v2)‖3/2,∞
≤ C ′ (|U | + |ω| + ‖v1‖3,∞ + ‖v2‖3,∞

) ‖∇(v1 − v2)‖3/2,∞

for some C ′ = C ′(�) > 1. Therefore, taking

δ0 = min

(

δ′0,
1

4C ′

)

and ε0 = 1

4C ′

and assuming that

‖v1‖3,∞, ‖v2‖3,∞ ≤ ε0,

we conclude that (v1, π1) = (v2, π2). This completes the proof of Theorem 1.1.

Proof of Corollary 1.1. Since the constant C0 in the estimate (1.6) is independent
of n, it follows from Alaoglu’s compactness theorem that there exist a subse-
quence of {(vn, πn)}, which we denote by {(vn, πn)} again, and a pair (ṽ, π̃) in
Ḣ1

3/2,∞(�)×L3/2,∞(�) such that vn → ṽ weakly-∗ in L3,∞(�) and (∇vn, πn) →
(∇ṽ, π̃ ) weakly-∗ in L3/2,∞(�). It is easy to show that ṽ also satisfies the estimate
(1.5).
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On the other hand, it is well-known that Ḣ1
3/2,∞(�) ↪→ H1

q (�
′) = {u ∈

Lq(�
′) : ∇u ∈ Lq(�

′)} for any q < 3/2 and bounded �′ ⊂ �. Hence it follows
from the Rellich compactness theorem that vn → ṽ in Lq(�

′) for any q < 3 and
bounded �′ ⊂ �. These convergence properties enable us to deduce, by a stan-
dard argument, that (ṽ, π̃) is a weak solution in Ḣ1

3/2,∞(�)× L3/2,∞(�) of (NS)
with data (F,U, ω). But since both (v, π) and (ṽ, π̃) satisfy the smallness condition
(1.5), it follows from the uniqueness assertion of Theorem 1.1 that (v, π) = (ṽ, π̃).

In fact, the above argument yields that every subsequence of {(vn, πn)} has a
subsequence that converges weakly-∗ in Ḣ1

3/2,∞(�)× L3/2,∞(�) to the same limit
(v, π). Therefore by a standard contradiction argument using Alaoglu’s compact-
ness theorem we easily deduce the convergence of the full sequence {(vn, πn)} to
(v, π).

Proof of Theorem 1.2. Let 3/2 < q < 3 and 1 ≤ r ≤ ∞, and suppose that
F ∈ �q,r and |U |+ |ω|+‖F‖3/2,∞ < δ′0 = δ′0(�, q, r). Then by Proposition 4.1,
there exists at least one solution (v1, π1) ∈ Vq,r ×�q,r of (NS) satisfying the esti-
mates (4.42) and (4.43). This proves the existence assertion of the theorem, in partic-
ular. To prove the uniqueness, let us suppose that (v2, π2) ∈ Vq,r ×�q,r is a solution
of (NS) which is possibly different from (v1, π1). Let us define (v, π) ∈ Vq,r ×�q,r

by

(v, π) = (v1 − v2, π1 − π2).

Then (v, π) is a solution in Vq,r ×�q,r of the following linear problem:
⎧
⎪⎪⎨

⎪⎪⎩

Lv + ∇π = div G in �,
div v = 0 in �,

v = 0 on ∂�,
v(x) → 0 as |x | → ∞,

(4.48)

where

G = Qb(v2)− Qb(v1) = v ⊗ (v1 + b)+ (v2 + b)⊗ v.

Assume for the moment that (v, π) has the following additional regularity

(v, π) ∈ Ḣ1
2 (�)× L2(�). (4.49)

Then since v1, v2 ∈ L3,∞(�) and b ∈ C∞
0,σ (�), it follows from Lemmas 4.3

and 4.1 that

‖∇v‖2
2 = −
∫

�

G : ∇v dx = −
∫

�

v ⊗ (v1 + b) : ∇v dx

≤ C
(|U | + |ω| + ‖v1‖3,∞

) ‖∇v‖2
2

for some C . Since (v1, π1) satisfies the estimate (4.42), we thus obtain

‖∇v‖2
2 ≤ C0

(|U | + |ω| + ‖F‖3/2,∞
) ‖∇v‖2

2
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for some C0 = C0(�). Therefore, assuming that

|U | + |ω| + ‖F‖3/2,∞ < δ ≡ min(δ0, 1/2C0),

we conclude that ‖∇v‖2
2 = 0 and so (v1, π1) = (v2, π2) in �.

Therefore, to complete the uniqueness proof, it remains to prove (4.49). This
can be shown by a bootstrap argument based on Theorems 1.3 and 4.1. First of all,
noting that

v, v1, v2 ∈ Vq,r ↪→ Vq,∞ ↪→ L3,∞(�) ∩ Lq∗,∞(�),
we deduce from Lemma 4.2 that G ∈ L3/2,∞(�)∩ Ls1,∞(�),where s1 = q∗/2 >
3/2. Suppose that s1 < 3. Then since 3/2 < s1 < 3 and G ∈ �s1,∞, it follows
from Theorems 1.3, 4.1, Lemmas 3.1 and 4.2 that

v ∈ Vs1,∞ ↪→ L3,∞(�) ∩ Ls∗
1 ,∞(�) and G ∈ L3/2,∞(�) ∩ Ls2,∞(�),

where
1

s2
= 1

q∗ + 1

s∗
1

= 1

s1
+
(

1

q∗ − 1

3

)

<
1

s1
.

Similarly, if s2 < 3, then we have

v ∈ Vs2,∞ and G ∈ L3/2,∞(�) ∩ Ls3,∞(�),
where

1

s3
= 1

q∗ + 1

s∗
2

= 1

s2
+
(

1

q∗ − 1

3

)

<
1

s2
.

Hence by a simple induction, we conclude that

v ∈ Vs j ,∞ and G ∈ L3/2,∞(�) ∩ Ls j+1,∞(�)
for all j with s j < 3, where {s j } is a sequence defined recursively by

s1 = q∗

2
and

1

s j+1
= 1

q∗ + 1

s∗
j

= 1

s j
+
(

1

q∗ − 1

3

)

( j ≥ 1).

Since 3 < q∗ < ∞, it follows that 0 < 1/s1 < 2/3 and 1/s j > 1/s j+1 >

1/s j − 1/3 for all j ≥ 1. Hence there exists the smallest j = j0 ≥ 1 such that
0 < 1/s j ≤ 1/3 or equivalently s j ≥ 3. By definition of j0, we deduce that
G ∈ L3/2,∞(�) ∩ Ls j0 ,∞(�) and s j0 ≥ 3. It follows from the reiteration theo-
rem in real interpolation theory that G ∈ Ls(�) for all 3/2 < s < 3. Hence by
Theorems 1.3 and 4.1, we have

(v, π) ∈ Ḣ1
s (�)× Ls(�) for all 3/2 < s < 3,

which proves (4.49). This completes the proof of Theorem 1.2.

Proof of Corollary 1.2. The proof is exactly the same as that of Corollary 1.1 and
so omitted.
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