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Development and evaluation of a weighing 
system for forestry cranes based on 
artificial neural networks
Chris Geiger, Daniel Greff, Michael Starke, Marcus Geimer

In both log and chip logistics, important reference data for logistic purposes are often lacking, 
as they are usually completed with insufficiently accurate estimates. In order to obtain higher 
quality information on the moving timber quantities, optional crane scales can be mounted 
between the telescope and the grapple of the forwarder. However, this has a negative effect 
on the crane kinematics and manoeuvrability while at the same time machine productivity is 
reduced due to an interruption in the loading process necessary for measurement.

In this paper, a data-based method is presented which allows dynamic weighing in a con-
tinuous loading process for modern forestry cranes without the need to install an additional 
hardware component on the machine. This allows a cost-effective and comprehensive appli-
cation. In the course of this method, a loading cycle is automatically detected, and the load-
ed mass is estimated by means of an artificial neural network (ANN). Signals from sensors 
installed as standard on modern forwarders serve as input variables. The Long Short-Term 
Memory (LSTM) architecture for the neural network has proven itself for handling these time-
based sensor data. Based on LSTM cells, an appropriate network was designed, trained and 
subsequently optimized. The test shows an average full-scale error of 1.5% per 1,000 kg for 
a single loading cycle. For a fully loaded forwarder, this results in a total mass error of less 
than 1.2%.  
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Different timber harvesting methods are used for the provision of raw wood, depending on the initial 
situation and the assortment. One case is the fully mechanized timber harvest, which is mainly used 
in smaller diameter classes and for the provision of short and industrial timber assortments (Berg 
et al. 2012). Here, a harvester cuts the trees and places them on the skid track. Then the forwarder 
moves the processed assortments from the logging area to the forest road for piling (Heini mann 1994, 
Cacot et al. 2006, Nurminen et al. 2006, Erler et al. 2010, Kuptz et al. 2015, Manner et al. 2016).

This machine combination offers the potential to obtain comprehensive assortment information 
on the current cut via the harvester data. The automatic recording of the assortment information and 
the additional acquisition of the spatial reference makes it possible to subsequently assign it to the 
forwarder (Manner et al. 2016). This means that the information of the timber moved is available for 
productivity recording of the work step or for further planning purposes.

Assortments which have not been processed by the harvester and thus recorded must be addi-
tionally measured to quantify them. The proportion of unrecorded quantities becomes particularly 
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clear when looking at wood chip assortments for green wood chips. In addition to processed prod-
ucts such as energy roundwood, these assortments mainly include crown parts or entire trees with 
high proportions of small compartments (Deutscher Forstwirtschaftsrat e.V. und Deutscher Hol-
zwirtschaftsrat e.V. 2015). Methods for recording the quantities of these assortments, which are 
inadequately or not at all documented by the harvester, are currently mostly based on estimation 
methods, but are usually insufficiently accurate, which in practice leads to problems in wood chip 
logistics (Kuptz et al. 2015).

The use of crane scales, which has already been considered for the provision of logs, therefore 
offers a solution for a mass determination as a dispositive measure (Bodelschwingh 2006). With 
the help of these scales, the weight of wood chips can also be recorded, and their volume can be de-
duced with high accuracy. Information about the size of the formed chip piles extends the degree of 
professionalization in chip logistics, whereby the increased performance of modern chippers can be 
achieved in the best possible way even under unfavourable storage and space situations (Kuptz et al. 
2015). In addition, with sufficient accuracy of the scale, overloading of the wood chip transporting 
trucks could be avoided. Increasing machine and road damage, as well as potential legal consequenc-
es for driver and owner, are typical effects of overloading.

State of the art
At present, crane scales are commercially available for this area of application in wood logistics. 
These can be optionally mounted between the telescope and the grapple and are based on the concept 
of mechanical or hydraulic force transducers (Komatsu 2019, Ponsse 2010). However, the crane kin-
ematics change negatively since the increased distance between the centre of gravity of the grapple 
and the telescope can lead to higher oscillating movements of the grapple.

With a crane scale, the grapple load can be measured in a dynamic loading process with a uni-
form, calm operation mode, whereby the accuracy is significantly reduced compared to a static meas-
urement (Korten and Kaul 2012, Wide 2012). In conjunction with interrupted loading processes for 
accurate measurements, this leads to a significantly reduced overall productivity.

Several research projects investigated a payload determination in wheel loaders or front loaders, 
whereby the vehicles were mapped as mechanical multi-body models. Based on these multi-body 
models, under the modelling of friction forces, the mass in the bucket was determined (Bennett et al. 
2014, Walawalkar and Heep 2016, Yung 2017, Walawalkar et al. 2018).

However, the quality of the weight determination highly depends on the level of detail of the mod-
els. Due to assumptions for model parameters such as component deformations, friction or leakages, 
which are based on empirical findings, the challenge is to map the non-linear system behaviour of the 
hydraulic system correctly. A model that reflects reality with sufficient accuracy can only be deter-
mined with extremely high effort (Frederic 2015, Fodor 2017).
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Neural networks were already developed for a wheel loader to determine the bucket content (Savia 
and Koivo 2002). Due to a lower number of degrees of freedom, reduced complexity in the hydraulic 
system, and the variable centre of mass, the network architectures are not transferable to forestry 
cranes. The high complexity of a forestry crane with a large number of degrees of freedom, all of 
which are subject to friction, makes the creation of mechanical replacement systems for weight de-
termination unreasonable. 

Objectives of the developed method for a data-based crane scale
With the data-based method presented in the following, a dynamic weighing process including sub-
sequent data processing is realized in order to close the information gap in the logistics process 
without reducing the machine’s productivity. The crane kinematics are not changed by additional 
components. Measurement and data post-processing are completely autonomous, so that neither an 
interaction between the forestry machine operator and the measurement system is necessary nor the 
loading behaviour has to be adapted (Geiger et al. 2018).

The data-based approach eliminates the need for time-consuming modelling of crane kinematics, 
taking cylinder and joint friction into account. With the abstracted approach of mapping the crane by 
means of an artificial neural network, unknown parameters in the hydraulic system, such as specific 
leakages or friction, do not have to be modelled explicitly. For the development and verification of the 
weighing system, using logs in this study creates reproducible conditions in comparison to an inves-
tigation of residual forest wood.

Basic physical principle and sensory acquisition of the input variables
The weight force caused by the mass in the grapple FG (Figure 1) correlates idealized with the force 
applied by the lifting cylinder (IBC) due to the equilibrium of moments around the axis of rotation of 
the inner boom in the following idealized way (Equation 1):

FIBC ⋅ lIBC = FG ⋅ (lG + lIBC)  (Eq. 1)

with

lIBC = Distance pivot point to IBC
lG  = Distance IBC to grapple

Here the mass m of the grapple content can be determined analytically, based on the pressure pIBC in 
the inner boom cylinder, as it is only connected on the piston side (Equation 2):
 

 (Eq. 2)

g  = acceleration of gravity
AIBC = piston area inner boom cylinder
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The equations above describe an idealized analytical way of determining weight by measuring 
pIBC as well as the grapple distance lG. The method developed is based on this idea. Due to the high 
number of joints and cylinders, an analytical calculation of the grapple content is not possible be-
cause of the non-linearities. Therefore, with the help of an ANN, in which the real influencing factors 
are taken into account, a substitute model for weight determination is developed, which maps these 
non-linear correlations.

The primary input variables for the neural network are the pressure in the inner boom cylinder 
pIBC, the kinematic conditions resulting in the variable distance lG as well as the operator inputs. The 
pressure is given into the network both directly, as a time series, and filtered. In addition, the fre-
quency spectrum of the IBC pressure resulting from a fast Fourier transform (FFT) is used as an extra 
input. Furthermore, in the hybrid hydraulic system (Geiger and Geimer 2017, Hohenlohe 2014) of 
the demonstrator machine, accumulator pressure, pump pressure and valve pressures are used as 
input signals. CAN-capable pressure sensors record all pressures with a frequency of 50 Hz. The oil 
temperature is also included in the ANN.

The distance of the grapple lG is calculated using kinematic relationships from the angles between 
the crane column-inner boom, inner boom-outer boom, slewing gear and the length of the telescope. 
The sensors required for this are standardly installed in the crane and can be read via the CAN bus. 
Based on this, the grapple speed and acceleration are calculated and entered into the net. The crane is 
controlled by two CAN bus-capable joysticks. These signals are thus located on the CAN bus as stand-
ard and can be recorded directly, which means that the operator's target specifications are recorded.

Figure 1: Force application position at a forestry crane
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Phases in the loading process of a forestry crane
Based on an evaluation of the measurements in real forest use, a loading cycle is divided into 4 load-
ing phases (Geiger and Geimer 2017):

I. Extending movement of the grapple from the stanchion basket to the log
II. Grasping and lifting the log
III. Retracting movement of the grapple with log to the middle of the stanchion basket
IV. Positioning and depositing of the log in the stanchion basket

Figure 2 shows the individual phases in accordance with Morales et al. (2015). It makes sense 
to measure the weight of the grapple contents in phases II and III, as the log is usually moved over 
the stanchion basket without bumping surrounding trees or stanchions. Phase IV cannot be included 
because the log rests on already loaded logs during positioning in the stanchion basket.

Measurement data acquisition on the application vehicle
The foundations of the data-based method are training data, which represent the real loading process 
in the forest. These enable the neural network to precisely determine the mass in the grapple from 
future, unknown data. In order to be able to use the real log mass as the target size in the training 
phase, the logs of the spruce trees were weighed individually beforehand and marked with a consec-
utive number (Figure 3). The scale used to determine the real mass had a measurement inaccuracy 
of 0.5 kg. The masses of the individual logs were in the range of 100–600 kg, the centre diameters 
ranged from 20–50 cm with a log length of 5.2 m. Due to the simultaneous loading of several logs, the 
measuring range extended up to 1,000 kg.

Figure 2: Loading phases (Geiger and Geimer 2017)
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The operator of the machine was instructed to load the logs randomly. Parallel to loading, the 
respective log number was noted so that it could then be converted to the loading mass. The forestry 
machine operator was asked to load several logs simultaneously in order to reflect the process as 
accurately as possible in the forest. A total of 500 loading cycles were recorded using this procedure, 
with 25 loading cycles corresponding to a completely filled stanchion basket of 10 solid cubic metres 
loading volume and 11 tonnes payload. 

Network architecture for the determination of the log mass  
An artificial neural network maps an input vector to an output vector with the help of the hidden layer. 
In the training phase, the individual parameters of the ANN are adjusted to convert the input variables 
into the desired output. The learning algorithm of the ANN can individually adjust the weighted con-
nections between the input neurons, the hidden layer neurons and the output neurons. This consists 
of a concatenation of backpropagation and the stochastic gradient method (Goodfellow et al. 2016).

The individual loading processes are available as time series data and represent the same process, 
but they show local differences and also differ in total duration. Each loading cycle is therefore unique 
in its signal sequence. In a classical ANN, the length of the input vector is freely selectable but cannot 
be changed. 

Recurrent neural networks (RNN) have proven to be useful for processing sequential information. 
The far-reaching advantage of an RNN lies in the cyclic connections of the cells in the hidden layer. 
This allows the network to determine an output vector for the current time step based on the current 
input vector and including all previous time steps. The data from the past have a direct influence on 
weight determination in the present. Thus, an RNN can learn complicated, locally shifted relationships 
in data and generate an abstract understanding of the system (Graves 2012, Goodfellow et al. 2016). 
A special variant of the RNN is the Long Short-Term Memory (LSTM) architecture (Hochreiter and 
Schmidhuber 1997). This enables the network to amplify the memory effect over a longer period and 
to react ideally precisely to previous and current input variables. During the training phase, the net-

Figure 3: Collecting training data (© C. Geiger)
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work learns which input signals it must remember and which have no influence on the target value 
or are only relevant in the current state (Graves 2012).

Figure 4 illustrates the structure of the network for determining the weight with a forestry crane 
based on the LSTM architecture. The input variables for the respective time step (orange) are for-
warded to the LSTM cells (green). There, the outputs of the LSTM cells of the previous time step are 
added (red), which represent the cyclic connections of the network. At the same time, each individual 
LSTM cell adopts the inner state from the previous time step (grey). The cell compares these three 
input signals with each other (Hochreiter and Schmidhuber 1997) and then produces a signal to the 
hidden neuron layer (blue). This maps the outputs of the hidden layer to the output neuron (yellow) of 
the network for the respective time step. These steps are repeated within the data series until its end.

Hyperparameters are parameters whose values must be determined before the start of training. They in-
fluence both the training process itself as well as the final solution quality. Apart from the hyperparameters 
for the data preparation of the input variables, such as filter width, the combination of possible signals or 
the temporal resolution of signals, there are other hyperparameters which influence the network structure, 
the initialization or the training phase. As a result, the network structure shown in Figure 4 turned out to 
be ideal, using 24 input neurons, 100 LSTM cells, 30 neurons in the hidden layer and 1 neuron as output.

Within the stochastic gradient method, the network weights are varied by averaging the gradient for 
randomly selected subsets of the training data (mini batches). This abrupt change of the gradient allows 
the algorithm to leave saddle points and converge to local minima of higher quality. The step size within 
the solution space along the gradient is called learning rate. The aim of the design phase is to optimally 
determine the hyperparameters such as learning rate or size of parallel batches. This generates a solution 
in which the error lies within the target range (Ge et al. 2015, Masters and Luschi 2018). 

Figure 4: Used network structure including LSTM cells  
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In order to reduce the error on test data, a so-called dropout artificially limits the capacity of the 
network in the training phase (Hinton et al. 2012). Using a value of 0.5 in the network for this pur-
pose results in half of the LSTM outputs being randomly omitted at each time step during training, 
thus set to zero. The purpose of this measure is to prevent co-adaptions between the individual neu-
rons. The individual cells are therefore forced to independently obtain information from the input 
signals (Hinton et al. 2012).

The noted log mass serves as target value for the respective loading cycle, but the RNN requires a 
target value for each time step. In order to generate this vector, it is assumed that the grapple load acts 
with its full weight on the crane as soon as it is in the air. In the gripping phase (phase II), the mass 
vector, black-dashed in Figure 5, is assumed to increase linearly. Figure 5 shows the starting point of 
the mass vector at approximately 7 seconds and illustrates the further course based on the previous 
assumptions. The slope is explicitly determined by the gradient of the grapple height after gripping 
the log. If the grapple height exceeds a threshold value, it is assumed that the load is completely in 
the air. The target mass vector is linearly interpolated between the start point and the endpoint. 

An analysis of the input weights of the LSTM cells makes it possible to estimate the behaviour of 
the network. According to the physical basics, it has been shown that especially the IBC pressure, 
unfiltered and filtered by means of a Savitzky-Golay filter, as well as the lG distance are relevant input 
variables for the network. Other significant input variables are the z-position of the grapple, the joy-
stick signal of the inner boom cylinder and the angle between the inner boom and the crane column.

Automated weighing process in the assortment process
In order to achieve acceptance and applicability of the described method for weighing the grapple 
content, this method must be user-friendly. Due to the large amount of data generated during a work-
ing day, it is therefore essential to automate the individual weight estimation process. Figure 6 illus-
trates the sequence of the automated weighing process, in which the loaded masses of a complete 
working day are determined in a post-processing procedure.

Figure 5: Mass vector including linear increase 
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The forwarder is located several times in the skid track during a whole working day, which is 
why these periods must be extracted in the first step. The individual loading cycles are subsequently 
identified for each skid track. The 4 phases of the loading cycle are then determined for each detected 
loading cycle and all recorded signals for phase II and phase III are stored since these time series 
data form the inputs for the neural network. With the trained RNN, the mass is estimated for the 
respective loading cycle. The individual steps of the explained method are explained in detail below.

Step 1: Detection of the forwarder on skid track
The working process of loading, i. e. the period in which the forwarder is on the skid track, must be 
determined first in order to minimize the amount of data to be examined for the subsequent algo-
rithms. To ensure that this process runs as quickly as possible and with minimum computational re-
sources, only the signals of the swivel angle and the cylinder pressure of the grapple are considered. 
Although loading can easily be distinguished from the work processes of driving loaded and unloaded 
(Figure 6), a differentiation between unloading is not trivial. For this differentiation, an algorithm 
was developed which detects the loading cycles of the forwarder. Hereby, the cylinder pressure of the 
grapple is considered when swivelling the grapple towards the stanchion basket. This pressure is sig-
nificantly higher during loading than unloading, as the grapple is swung back empty to the stanchion 
basket. After successful detection of possible loading cycles, time-related loading cycles are combined 
into intervals at which the forwarder is on the skid track. In these periods, all input signals are used 
for further evaluation for the subsequent steps.

Step 2: Detection of the individual loading cycles and the gripping phase
The individual loading cycles are detected via the grapple position, explicitly the lateral distance 
between the grapple and the crane column. The part of the loading cycle that is relevant for the scale 
begins when the stanchion basket is left. In addition, all cycles are examined according to their pres-
sure curves in the main arm cylinder. If the pressure while leaving the basket is lower than while 
re-entering, there is loading. 

Figure 6: Flow chart of the automated weighing process for a forwarder
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The gripping phase and the subsequent retraction movement of the crane including the load contain 
the information that the recurrent neural network uses for the weighing process. The position of the 
gripping phase in the loading cycle is determined by an analysis of the joystick signals, the IBC pres-
sure and the grapple position (Figure 5). 

However, the raw data of the IBC pressure are not used to determine the gripping phase, as the 
local oscillations in the signal make a precise analysis difficult. The pressure fluctuations are reduced 
by filtering the signal. After detecting all filtered pressure peaks in the cycle, all positions in which 
the grapple is in a local minimum are checked for three conditions (Figure 5): 

 � Is there a pressure peak in the immediate vicinity? 
 � Does the grapple close in the immediate vicinity?
 � Does the z coordinate rise above a threshold value immediately after the minimum?

If all three conditions are met, this minimum is marked as a possible starting point for the gripping 
phase. If several minima meet the requirements, the last occurring minimum is always selected. 
Therefore, the mass, which is ultimately loaded into the vehicle, always enters the network. This 
covers the practical case of collecting several small-diameter logs, which are then loaded together. 

Step 3: Weighing process with neural network
After detection of the gripping phase, the corresponding part of the cycle is added to the RNN as 
input data. Each input signal is available in form of a time series. The trained RNN calculates a mass 
prediction at each time step based on all previous input data. This resulting mass vector is converted 
in the last step by an estimation function to a scalar value, which corresponds to the loaded log mass. 

Figure 7 illustrates the prediction of the mass vector by the RNN exemplary for a cycle. Determin-
ing a scalar mass from this prediction, it is necessary to consider the appropriate section of the output 
vector. In this case, it starts between seconds 3 and 4 (Figure 7). To determine this point, the gradient 
of the mass vector is used. Starting from the beginning of the section, the symmetric trimmed mean 
of all subsequent data points is calculated. In comparison to the arithmetic mean, it is suitable as an 
estimation function because it suppresses local maxima and minima. 

Figure 7: Prediction of the network 
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However, if there is an asymmetric distribution, as shown in Figure 7, a symmetrically trimmed 
mean is not ideal, as valid data points are hidden at one end of the data range. The determination of 
the log mass was therefore extended by an additional step. Unbalanced outliers are determined by a 
distance to the previously calculated trimmed mean by inserting a tolerance range. This is highlight-
ed in red in Figure 7. The mean value of the data points circled in red represents the final log mass 
for this loading cycle.

Results from a measurement campaign 
The random processes in the training phase and initialization of neural networks leads to each RNN 
being in a different local minimum in the solution space after the training. In order to cover the opti-
mal solution space, 120 RNN were trained after the design phase. Since each RNN has different final 
weights, this leads to varying strengths and weaknesses in prediction quality. According to the theo-
ry, improved results can be achieved through a combination of the different predictions to an overall 
prediction (Perrone and Cooper 1995, Goodfellow et al. 2016). The trained networks were therefore 
tested for accuracy on a test data set consisting of 25 randomly selected cycles. This test data set was 
compiled under the same conditions as the training data set but was not used to train the RNN. The 
error on a data set unknown to the network provides information on what extent the network was able 
to generate an abstract understanding of the system during the training.

It is important for the quality of the dynamic weighing process that there is no continuous over- or 
underestimation. In addition, the variance of the individual loading cycles should be as low as possi-
ble. Figure 8 shows the error during mass determination for a varying number of networks used. The 
ideal estimated mass results from the arithmetic mean of the 20 networks with the smallest error 
(Figure 8 on the right). This is also shown by the minimum variance compared to the mean of all 
networks (left) or the network with the smallest error (center), visually illustrated by the smallest dis-
tance of the data area in the box plot (Figure 8). If all networks are consulted, the error range stretches 
considerably, which indicates the poor quality of some local optima. The comparison with the indi-
vidual network with the smallest error also supports the thesis of the strengths and weaknesses of 
the individual networks. It should be noted here that the median of these two differs imperceptibly.

Figure 8: Overview of the errors on the test cycles with different network selection 
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With this network ensemble, it is possible to achieve an average accuracy of 15 kg per loading 
cycle on the basis of previously unknown data, which corresponds to an absolute average full-scale 
error of 1.5% related to 1,000 kg. Figure 9 illustrates the real log mass of the individual loading cycles 
and the corresponding estimated mass of the network. 

The quality of the estimates is constant over the entire range, and there is only one cycle which 
is not close to the ideal line. This outlier appears also in Figure 8 (right). The predicted mass of the 
fully-loaded forwarder with a payload of 11,974 kg thus deviates by 143 kg, which corresponds to a 
mass error of 1.19%. 

Conclusions
On the basis of an RNN, a mass determination of the grapple contents during a dynamic loading 
process is possible in an offline procedure under reproducible conditions with logs. The arithmetic 
mean of the 20 RNN with the lowest error was best suited for an optimal determination of this mass. 
The databased method is suitable for obtaining information about the mass moved during the course 
of the day.

The crane scale was developed and tested under reproducible conditions on a flat surface with 
a limited number of logs. A functionality test of the scale within a real forest application with more 
strongly varying assortment characteristics or vehicle inclinations is still pending. For the future use 
of a weighing system also in the traditional volume measure, appropriate conversion factors must 
be provided for chips, which consider among other things the moisture content or the proportion 
of green biomass of the assortment and make it possible to derive the volume proportions from the 
weight. The presented approach is based on an evaluation of the data at the end of a working day. In 
future, the method will be further developed so that the current mass in the grapple can be deter-
mined online using a convolutional neural network (CNN) and the driver can thus read the weight in 
real time. 

Using such a configured carrier vehicle, when equipping a mobile chipper, for example, enables to 
achieve an optimal payload in the wood chip process for trucks for onward transport. A cross-industry 
expansion of the system is therefore conceivable.

Figure 9: Result of network prediction for previously unknown test cycles



LANDTECHNIK 74(5), 2019 114

References
Bennett, N.; Walawalkar, A.; Schindler, C. (2014): Payload Estimation in Excavators: Model-Based Evaluation of Current 

Payload Estimation System. In: Proceedings of the 3rd Commercial Vehicle Technology Symposium (CVT2014) 

Berg, S.; Fischbach, J.; Brüchert, F.; Poissonnet, M.; Pizzirani, S.; Varet, A.; Sauter, U.H. (2012): Towards assessing the 
sustainability of European logging operations. European Journal of Forest Research 131(1), S. 81–94, https://doi.
org/10.1007/s10342-011-0561-x

Bodelschwingh, E. v. (2006): Analyse der Rundholzlogistik in der Deutschen Forst- und Holzwirtschaft – Ansätze für ein 
übergreifendes Supply Chain Management. Dissertation, TU München

Cacot, E.; Bigot, M.; Cuchet, E. (2006): Developing full-mechanized harvesting systems for broadleaved trees: a 
challenge to face the reduction of the manual workforce and to sustain the supply of hardwood industries. 
In: 2006 Council on Forest Engineering (COFE) Conference Proceedings: “Working Globally – Sharing Forest 
Engineering Challenges and Technologies Aroun

Deutscher Forstwirtschaftsrat e. V. und Deutscher Holzwirtschaftsrat e. V. (2015): Rahmenvereinbarung für den 
Rohholzhandel in Deutschland (RVR)

Erler, J.; Purfürst, T.; Dög, M. (2010): Präzise Forstwirtschaft. Reihe Technikmanagement in der Forstwirtschaft, 
Tharandt, Fachinstitut für Waldarbeit

Fodor, S. (2017): Towards semi-automation of forestry cranes. Automated trajectory planning and active vibration 
damping. Dissertation, Department of applied physics and electronics, Umeå University

Frederic, B. (2015): Dynamic, Continuous, and Center of Gravity Independent Weighing with a Loader. Dissertation, 
Technischen Universität Kaiserslautern

Ge, R.; Huang, F.; Jin, C.; Yuan, Y. (2015): Escaping From Saddle Points -- Online Stochastic Gradient for Tensor 
Decomposition. In: JMLR: Workshop and Conference Proceedings, Conference on Learning Theory, 3–6 July 2015, 
Paris, France vol 40, pp. 797–842

Geiger, C.; Geimer, M. (2017): Efficiency Optimisation of a Forestry Crane by Implement Hydraulics with Energy 
Recovery. In: VDI-MEG – 75th International Conference on Agricultural Engineering, LAND.TECHNIK AgEng 2017 - 
The Forum for Agricultural Engineering Innovations, Hannover, 10–11 November 2017, pp. 117–125

Geiger, C.; Starke, M.; Greff, D.; Geimer, M. (2018): The potential of a weight detection system for forwarders using an 
artificial neural network. In: FORMEC 2018 – Improved Forest Mechanisation: mobilizing natural resources and 
preventing wildfires, Proceedings

Goodfellow, I.; Bengio, Y.; Courville, A. (2016): Deep Learning. Cambridge, USA, MIT Press 

Graves, A. (2012): Supervised Sequence Labelling with Recurrent Neural Networks. Springer Verlag

Heinimann, H.R. (1994): Beiträge zur forstlichen Verfahrenstechnik. Tagungsbericht über das 28. Internationale 
Symposium „Mechanisierung der Waldarbeit“ vom 28.08.–02.09.1994 in Langnau i.E., Schweiz, Zürich, Verl. der 
Fachvereine an den schweizer. Hochschulen u. Techniken

Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. (2012): Improving neural networks by 
preventing co-adaptation of feature detectors. https://arxiv.org/pdf/1207.0580.pdf, accessed on 19 Sept 2019

Hochreiter, S.; Schmidhuber, J. (1997): Long Short-Term Memory. Neural Computation 9(8), pp. 1735–1780, 
https://doi.org/10.1162/neco.1997.9.8.1735

Hohenloher Spezial-Maschinenbau GmbH & Co. KG. (2014): DE 202014006861, Hohenlohe, F.

Komatsu (2019): Options Forwarders. https://www.komatsuforest.com/forest-machines/our-forwarders/forwarder-
options, accessed on 13 Apr 2019

Korten, S.; Kaul, C. (2012): Optimierung der Transportprozesse bei Holzernte und Rundholztransport durch den Einsatz 
von Wechselbrücken. Schlussbericht, Lehrstuhl für Forstliche Arbeitswissenschaft und Angewandte Informatik der 
TU München

Kuptz, D.; Turowski, P.; Hartmann, H.; Schulmeyer, F. (2015): Optimale Bereitstellungsverfahren für Holzhackschnitzel. 
Berichte aus dem TFZ, Technologie- und Förderzentrum (TFZ) im Kompetenzzentrum für Nachwachsende 
Rohstoffe



LANDTECHNIK 74(5), 2019 115

Manner, J.; Palmroth, L.; Nordfjell, T.; Lindroos, O. (2016): Load level forwarding work element analysis based on 
automatic follow-up data. Silva Fennica 50(3), https://doi.org/10.14214/sf.1546

Masters, D.; Luschi, C. (2018): Revisiting Small Batch Training for Deep Neural Networks. CoRR, https://arxiv.org/
pdf/1804.07612.pdf, accessed on 19 Sept 2019

Morales, D.O.; La Hera, P.; Westerberg, S.; Freidovich, L.B.; Shiriaev, A.S. (2015): Path-Constrained Motion Analysis: An 
Algorithm to Understand Human Performance on Hydraulic Manipulators. IEEE Transactions on Human-Machine 
Systems 45(2), pp. 187–199, https://doi.org/10.1109/THMS.2014.2366873

Nurminen, T.; Korpunen, H.; Uusitalo, J. (2006): Time consumption analysis of the mechanized cut-to-length harvesting 
system. Silva Fennica 40(2), https://doi.org/10.14214/sf.346

Perrone, M.P.; Cooper, L.N. (1995): When networks disagree: Ensemble methods for hybrid neural networks. In: 
How We Learn; How We Remember: Toward an Understanding of Brain and Neural Systems – Selected Papers 
of Leon N Cooper. World Scientific Series in 20th Century Physics: Volume 10, pp. 342–358, https://doi.
org/10.1142/9789812795885_0025

Ponsse (2010): Ponsse attachments add value to your machine. http://www.toimilgruas.com/pdf/Attachment_ENGL.
pdf , accessed on 13 Apr 2019

Savia, M.; Koivo, H. (2002): On-line payload determination of a moving loader using neural networks. IFAC Proceedings 
Volumes 35(1), pp. 37–42, https://doi.org/10.3182/20020721-6-ES-1901.01157 

Walawalkar, A; Heep, S.; Schneider, F.; Schüßler, J.; Schindler, C. (2016): A method for payload estimation in 
excavators. In: Proceedings of the 4th Commercial Vehicle Symposium (CVT 2016), 8–10 March 2016, University 
of Kaiserslautern, Germany, pp. 424–437

Walawalkar, A.; Heep, S.; Schindler, C.; Leifeld, R.; Frank, M. (2018): Validation of an analytical method for payload 
estimation in excavators.  In: Commercial Vehicle Technology 2018, Eds. Berns K. et al., Proceedings, Springer 
Vieweg, Wiesbaden, pp. 3–16

Wide, M.I. (2012): Väg rätt redan i skogen. Skogforsk, https://www.skogforsk.se/cd_48e558/contentassets/
d161ed005cd04d9dbcbb3302102a39ae/nr15_jh_4s_high.pdf, accessed on 19 Sept 2019 

Yung, I. (2017): Automation of Front-End Loaders. Electronic Self Leveling and Payload Estimation. Dissertation, 
Umeå University

Authors
Chris Geiger, M.Sc. is member of the scientific staff, Daniel Greff, B.Sc. was student assistant and 
Prof. Dr.-Ing. Marcus Geimer is head of the Institute of Mobile Machines (Mobima) at Karlsruher Institut für Technologie 
(KIT), Rintheimer Querallee 2, 76131 Karlsruhe, e-mail: chris.geiger@kit.edu.
M.Sc. Michael Starke is member of the scientific staff at Berner Fachhochschule (BFH), Hochschule für Agrar-, Forst- 
und Lebensmittelwissenschaften, Länggasse 85, 3052 Zollikofen, Schweiz

Acknowledgements
This project has received funding from the European Union's Horizon 2020 research and innovation programme under 
grant agreement No 727883. 


